Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 13/2021

18-08-2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

A Novel Cu-Containing Al0.5CoCrCuV 3d Transition Metal High-Entropy Alloy with Attractive Yield Strength

Authors: J. J. Yi, L. Yang, M. Q. Xu, L. Wang

Published in: Physics of Metals and Metallography | Issue 13/2021

Login to get access
share
SHARE

Abstract

A novel 3d transition metal high-entropy alloy (3d TM HEA), Al0.5CoCrCuV, was designed through the substitution of Fe and Ni by V in the base alloy Al0.5CoCrCuFeNi, and then was fabricated by arc-melting. The phase components of the studied alloy in the as-cast and annealed conditions are the FCC + BCC dual phases, unlike the single FCC phase component of the precursory base alloy. In the currently studied alloy, the volume fraction of the BCC phase reaches 87% and it acts as the dendrites, while the FCC phase is secondary and is composed of Cu-rich phases associated with the net-like framework. The as-cast and annealed alloys both exhibit a relatively promising synergy in strength and ductility. Specifically, the yield strength of the as-cast alloy reaches as high as 1935 MPa with an elongation of 4.7%, while it decreased slightly to 1825 MPa after annealing with a negligible change in the elongation. In this work, phase constitution, phase morphology and solid solution strengthening were conducted to uncover the mechanical behavior.
Literature
1.
go back to reference J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, “Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes,” Adv. Eng. Mater. 6, 299–303 (2004). CrossRef J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, “Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes,” Adv. Eng. Mater. 6, 299–303 (2004). CrossRef
2.
go back to reference B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, “Microstructural development in equiatomic multicomponent alloys,” Mater. Sci. Eng., A 375– 377, 213–218 (2004). CrossRef B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, “Microstructural development in equiatomic multicomponent alloys,” Mater. Sci. Eng., A 375377, 213–218 (2004). CrossRef
3.
go back to reference V. M. Nadutov, S. Y. Makarenko, and P. Y. Volosevich, “Effect of aluminum on fine structure and distribution of chemical elements in high-entropy alloys Al xFeNiCoCuCr,” Phys. Met. Metallogr. 116 (5), 439–444 (2015). CrossRef V. M. Nadutov, S. Y. Makarenko, and P. Y. Volosevich, “Effect of aluminum on fine structure and distribution of chemical elements in high-entropy alloys Al xFeNiCoCuCr,” Phys. Met. Metallogr. 116 (5), 439–444 (2015). CrossRef
4.
go back to reference D. G. Shaysultanov, N. D. Stepanov, G. A. Salishchev, and M. A. Tikhonovsky, “Effect of heat treatment on the structure and hardness of high-entropy alloys CoCrFeNiMnV x ( x = 0.25, 0.5, 0.75, 1),” Phys. Met. Metallogr. 118 (6), 579–590 (2017). CrossRef D. G. Shaysultanov, N. D. Stepanov, G. A. Salishchev, and M. A. Tikhonovsky, “Effect of heat treatment on the structure and hardness of high-entropy alloys CoCrFeNiMnV x ( x = 0.25, 0.5, 0.75, 1),” Phys. Met. Metallogr. 118 (6), 579–590 (2017). CrossRef
5.
go back to reference N. A. Krapivka, S. A. Firstov, M. V. Karpets, A. N. Myslivchenko, and V. F. Gorban, “Features of phase and structure formation in high-entropy alloys of the AlCrFeCoNiCu x system ( x = 0, 0.5, 1.0, 2.0, 3.0),” Phys. Met. Metallogr. 116 (5), 467–474 (2015). CrossRef N. A. Krapivka, S. A. Firstov, M. V. Karpets, A. N. Myslivchenko, and V. F. Gorban, “Features of phase and structure formation in high-entropy alloys of the AlCrFeCoNiCu x system ( x = 0, 0.5, 1.0, 2.0, 3.0),” Phys. Met. Metallogr. 116 (5), 467–474 (2015). CrossRef
6.
go back to reference M. V. Ivchenko, V. G. Pushin, A. N. Uksusnikov, and N. Wanderka, “Microstructure features of high-entropy equiatomic cast AlCrFeCoNiCu alloys,” Phys. Met. Metallogr. 114 (6), 514–520 (2013). CrossRef M. V. Ivchenko, V. G. Pushin, A. N. Uksusnikov, and N. Wanderka, “Microstructure features of high-entropy equiatomic cast AlCrFeCoNiCu alloys,” Phys. Met. Metallogr. 114 (6), 514–520 (2013). CrossRef
7.
go back to reference D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Mater. 122, 448–511 (2017). CrossRef D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Mater. 122, 448–511 (2017). CrossRef
8.
go back to reference M. R. Chen, S. J. Lin, J. W. Yeh, S. K. Chen, Y. S. Huang, and M. H. Chuang, “Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al 0.5CoCrCuFeNi high-entropy alloy,” Metall. Mater. Trans. A 37, 1363–1369 (2006). CrossRef M. R. Chen, S. J. Lin, J. W. Yeh, S. K. Chen, Y. S. Huang, and M. H. Chuang, “Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al 0.5CoCrCuFeNi high-entropy alloy,” Metall. Mater. Trans. A 37, 1363–1369 (2006). CrossRef
9.
go back to reference J. W. Yeh, S. Y. Chang, Y. D. Hong, S. K. Chen, and S. J. Lin, “Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements,” Mater. Chem. Phys. 103 (1), 41–46 (2007). CrossRef J. W. Yeh, S. Y. Chang, Y. D. Hong, S. K. Chen, and S. J. Lin, “Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements,” Mater. Chem. Phys. 103 (1), 41–46 (2007). CrossRef
10.
go back to reference S. Praveen, B. S. Murty, and R. S. Kottada, “Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys,” Mater. Sci. Eng., A 534, 83–89 (2012). CrossRef S. Praveen, B. S. Murty, and R. S. Kottada, “Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys,” Mater. Sci. Eng., A 534, 83–89 (2012). CrossRef
11.
go back to reference J. Y. He, W. H. Liu, H. Wang, Y. Wu, X. J. Liu, T. G. Nieh, and Z. P. Lu, “Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system,” Acta Mater. 62, 105–113 (2014). CrossRef J. Y. He, W. H. Liu, H. Wang, Y. Wu, X. J. Liu, T. G. Nieh, and Z. P. Lu, “Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system,” Acta Mater. 62, 105–113 (2014). CrossRef
12.
go back to reference B. S. Li, Y. P. Wang, M. X. Ren, C. Yang, and H. Z. Fu, “Effects of Mn, Ti and V on the microstructure and properties of AlCrFeCoNiCu high entropy alloy,” Mater. Sci. Eng., A 498 (1–2), 482–486 (2008). CrossRef B. S. Li, Y. P. Wang, M. X. Ren, C. Yang, and H. Z. Fu, “Effects of Mn, Ti and V on the microstructure and properties of AlCrFeCoNiCu high entropy alloy,” Mater. Sci. Eng., A 498 (1–2), 482–486 (2008). CrossRef
13.
go back to reference Y. F. Kao, S. K. Chen, J. H. Sheu, J. T. Lin, W. E. Lin, J. W. Yeh, S. J. Lin, T. H. Liou, and C. W. Wang, “Hydrogen storage properties of multi-principal-component CoFeMnTi xV yZr z alloys,” Int. J. Hydrogen Energy 35 (17), 9046–9059 (2010). CrossRef Y. F. Kao, S. K. Chen, J. H. Sheu, J. T. Lin, W. E. Lin, J. W. Yeh, S. J. Lin, T. H. Liou, and C. W. Wang, “Hydrogen storage properties of multi-principal-component CoFeMnTi xV yZr z alloys,” Int. J. Hydrogen Energy 35 (17), 9046–9059 (2010). CrossRef
14.
go back to reference C. Li, J. C. Li, M. Zhao, and Q. Jiang, “Effect of aluminum contents on microstructure and properties of Al xCoCrFeNi alloys,” J. Alloys Compd. 504, 515–518 (2010). CrossRef C. Li, J. C. Li, M. Zhao, and Q. Jiang, “Effect of aluminum contents on microstructure and properties of Al xCoCrFeNi alloys,” J. Alloys Compd. 504, 515–518 (2010). CrossRef
15.
go back to reference W. R. Wang, W. L. Wang, S. C. Wang, Y. C. Tsai, C. H. Lai, and J. W. Yeh, “Effects of Al addition on the microstructure and mechanical property of Al xCoCrFeNi high-entropy alloys,” Intermetallics 26, 44–51 (2012). CrossRef W. R. Wang, W. L. Wang, S. C. Wang, Y. C. Tsai, C. H. Lai, and J. W. Yeh, “Effects of Al addition on the microstructure and mechanical property of Al xCoCrFeNi high-entropy alloys,” Intermetallics 26, 44–51 (2012). CrossRef
16.
go back to reference N. D. Stepanov, D. G. Shaysultanov, G. A. Salishchev, M. A. Tikhonovsky, E. E. Oleynik, A. S. Tortika, and O. N. Senkov, “Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiV x high entropy alloys,” J. Alloys Compd. 628, 170–185 (2015). CrossRef N. D. Stepanov, D. G. Shaysultanov, G. A. Salishchev, M. A. Tikhonovsky, E. E. Oleynik, A. S. Tortika, and O. N. Senkov, “Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiV x high entropy alloys,” J. Alloys Compd. 628, 170–185 (2015). CrossRef
17.
go back to reference S. Guo, C. Ng, and C. T. Liu, “Anomalous solidification microstructures in Co-free Al xCrCuFeNi 2 high-entropy alloys,” J. Alloys Compd. 557, 77–81 (2013). CrossRef S. Guo, C. Ng, and C. T. Liu, “Anomalous solidification microstructures in Co-free Al xCrCuFeNi 2 high-entropy alloys,” J. Alloys Compd. 557, 77–81 (2013). CrossRef
18.
go back to reference Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, “Solid-solution phase formation rules for multi-component alloys,” Adv. Eng. Mater. 10 (6), 534–538 (2008). CrossRef Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, “Solid-solution phase formation rules for multi-component alloys,” Adv. Eng. Mater. 10 (6), 534–538 (2008). CrossRef
19.
go back to reference S. Guo, C. Ng, J. Lu, and C. T. Liu, “Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys,” J. Appl. Phys. 109 (10), 103505 (2011). CrossRef S. Guo, C. Ng, J. Lu, and C. T. Liu, “Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys,” J. Appl. Phys. 109 (10), 103505 (2011). CrossRef
20.
go back to reference Z. Hu, Y. Zhan, G. Zhang, J. She, and C. Li, “Effect of rare earth Y addition on the microstructure and mechanical properties of high entropy AlCoCrCuNiTi alloys,” Mater. Des. 31 (3), 1599–1602 (2010). CrossRef Z. Hu, Y. Zhan, G. Zhang, J. She, and C. Li, “Effect of rare earth Y addition on the microstructure and mechanical properties of high entropy AlCoCrCuNiTi alloys,” Mater. Des. 31 (3), 1599–1602 (2010). CrossRef
21.
go back to reference S. Varalakshmi, M. Kamaraj, and B. S. Murty, “Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying,” Mater. Sci. Eng., A 527 (4–5), 1027–1030 (2010). CrossRef S. Varalakshmi, M. Kamaraj, and B. S. Murty, “Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying,” Mater. Sci. Eng., A 527 (4–5), 1027–1030 (2010). CrossRef
22.
go back to reference X. F. Wang, Y. Zhang, Y. Qiao, and G. L. Chen, “Novel microstructure and properties of multicomponent CoCrCuFeNiTi x alloys,” Intermetallics 15 (3), 357–362 (2007). CrossRef X. F. Wang, Y. Zhang, Y. Qiao, and G. L. Chen, “Novel microstructure and properties of multicomponent CoCrCuFeNiTi x alloys,” Intermetallics 15 (3), 357–362 (2007). CrossRef
23.
go back to reference A. Takeuchi and A. Inoue, “Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and Its application to characterization of the main alloying element,” Mater. Trans. 46, 2817–2829 (2005). CrossRef A. Takeuchi and A. Inoue, “Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and Its application to characterization of the main alloying element,” Mater. Trans. 46, 2817–2829 (2005). CrossRef
24.
go back to reference C. J. Tong, Y. L. Chen, S. K. Chen, J. W. Yeh, T. T. Shun, C. H. Tsau, S. J. Lin, and S. Y. Chang, “Microstructure characterization of Al xCoCrCuFeNi high-entropy alloy system with multiprincipal elements,” Metall. Mater. Trans. A 36, 881–893 (2004). CrossRef C. J. Tong, Y. L. Chen, S. K. Chen, J. W. Yeh, T. T. Shun, C. H. Tsau, S. J. Lin, and S. Y. Chang, “Microstructure characterization of Al xCoCrCuFeNi high-entropy alloy system with multiprincipal elements,” Metall. Mater. Trans. A 36, 881–893 (2004). CrossRef
25.
go back to reference É. Fazakas, V. Zadorozhnyy, and D. V. Louzguine-Luzgin, “Effect of iron content on the structure and mechanical properties of Al 25Ti 25Ni 25Cu 25 and (AlTi) 60 – xNi 20Cu 20Fe x ( x = 15, 20) high-entropy alloys,” Appl. Surf. Sci. 358, 549–555 (2015). CrossRef É. Fazakas, V. Zadorozhnyy, and D. V. Louzguine-Luzgin, “Effect of iron content on the structure and mechanical properties of Al 25Ti 25Ni 25Cu 25 and (AlTi) 60 – xNi 20Cu 20Fe x ( x = 15, 20) high-entropy alloys,” Appl. Surf. Sci. 358, 549–555 (2015). CrossRef
26.
go back to reference J. Pi, P. Ye, Z. Hui, and Z. Lu, “Microstructure and properties of AlCrFeCuNi x (0.6 ≤ x ≤ 1.4) high-entropy alloys,” Mater. Sci. Eng., A 534, 228–233 (2012). CrossRef J. Pi, P. Ye, Z. Hui, and Z. Lu, “Microstructure and properties of AlCrFeCuNi x (0.6 ≤ x ≤ 1.4) high-entropy alloys,” Mater. Sci. Eng., A 534, 228–233 (2012). CrossRef
27.
go back to reference J. P. Hirth, J. Lothe, Theory of Dislocations, second ed., Wiley-Interscience Publication, 1982. J. P. Hirth, J. Lothe, Theory of Dislocations, second ed., Wiley-Interscience Publication, 1982.
Metadata
Title
A Novel Cu-Containing Al0.5CoCrCuV 3d Transition Metal High-Entropy Alloy with Attractive Yield Strength
Authors
J. J. Yi
L. Yang
M. Q. Xu
L. Wang
Publication date
18-08-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 13/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21130123