Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 13/2021

18-08-2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

A Novel Cu-Containing Al0.5CrCuFeV High-Entropy Alloy with a Balanced Strength-Ductility Trade-Off

Authors: J. J. Yi, L. Yang, M. Q. Xu, L. Wang

Published in: Physics of Metals and Metallography | Issue 13/2021

Login to get access
share
SHARE

Abstract

A novel 3d transition metal high-entropy alloy (3d tm HEA), Al0.5CrCuFeV, was prepared by vacuum arc-melting. Its phase components, microstructure, and compressive properties in the as-cast and annealed states were investigated. The results indicated that the microstructure consisted of primary BCC dendrites with a volume fraction of 88% and minor FCC Cu-enriched regions that formed a net-like framework. In both the as-cast and annealed states, the alloy possessed a balance between its yield strength (1360 MPa) and ductility (9.1% elongation). Annealing modified the elemental distribution without changing the mechanical properties, implying that the microstructure morphology, not the elemental distribution, played a dominant role in determining the macro-mechanical behavior.
Literature
1.
go back to reference J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, “Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes,” Adv. Eng. Mater. 6, 299–303 (2004). CrossRef J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, “Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes,” Adv. Eng. Mater. 6, 299–303 (2004). CrossRef
2.
go back to reference B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, “Microstructural development in equiatomic multicomponent alloys,” Mater. Sci. Eng., A 375– 377, 213–218 (2004). CrossRef B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, “Microstructural development in equiatomic multicomponent alloys,” Mater. Sci. Eng., A 375377, 213–218 (2004). CrossRef
3.
go back to reference D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Mater. 122, 448–511 (2017). CrossRef D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Mater. 122, 448–511 (2017). CrossRef
4.
go back to reference J. Y. He, W. H. Liu, H. Wang, Y. Wu, X. J. Liu, T. G. Nieh, and Z. P. Lu, “Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system,” Acta Mater. 62, 105–113 (2014). CrossRef J. Y. He, W. H. Liu, H. Wang, Y. Wu, X. J. Liu, T. G. Nieh, and Z. P. Lu, “Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system,” Acta Mater. 62, 105–113 (2014). CrossRef
5.
go back to reference Y. Cai, Y. Chen, Z. Luo, F. Gao, and L. Li, “Manufacturing of FeCoCrNiCu x medium-entropy alloy coating using laser cladding technology,” Mater. Des. 133, 91–108 (2017). CrossRef Y. Cai, Y. Chen, Z. Luo, F. Gao, and L. Li, “Manufacturing of FeCoCrNiCu x medium-entropy alloy coating using laser cladding technology,” Mater. Des. 133, 91–108 (2017). CrossRef
6.
go back to reference C. Shang, E. Axinte, W. Ge, Z. Zhang, and Y. Wang, “High-entropy alloy coatings with excellent mechanical, corrosion resistance and magnetic properties prepared by mechanical alloying and hot pressing sintering,” Surf. Interfaces 9, 36–43 (2017). CrossRef C. Shang, E. Axinte, W. Ge, Z. Zhang, and Y. Wang, “High-entropy alloy coatings with excellent mechanical, corrosion resistance and magnetic properties prepared by mechanical alloying and hot pressing sintering,” Surf. Interfaces 9, 36–43 (2017). CrossRef
7.
go back to reference S. Thangaraju, E. Bouzy, and A. Hazotte, “Phase stability of a mechanically alloyed CoCrCuFeNi high entropy alloy,” Adv. Eng. Mater. 19 (8), 1700095 (2017). CrossRef S. Thangaraju, E. Bouzy, and A. Hazotte, “Phase stability of a mechanically alloyed CoCrCuFeNi high entropy alloy,” Adv. Eng. Mater. 19 (8), 1700095 (2017). CrossRef
8.
go back to reference X. Xian, L. Lin, Z. Zhong, C. Zhang, C. Chen, K. Song, J. Cheng, and Y. Wu, “Precipitation and its strengthening of Cu-rich phase in CrMnFeCoNiCu x high-entropy alloys,” Mater. Sci. Eng., A 713, 134–140 (2018). CrossRef X. Xian, L. Lin, Z. Zhong, C. Zhang, C. Chen, K. Song, J. Cheng, and Y. Wu, “Precipitation and its strengthening of Cu-rich phase in CrMnFeCoNiCu x high-entropy alloys,” Mater. Sci. Eng., A 713, 134–140 (2018). CrossRef
9.
go back to reference M. V. Ivchenko, V. G. Pushin, A. N. Uksusnikov, and N. Wanderka, “Microstructure features of high-entropy equiatomic cast AlCrFeCoNiCu alloys,” Phys. Met. Metallogr. 114 (6), 514–520 (2013). CrossRef M. V. Ivchenko, V. G. Pushin, A. N. Uksusnikov, and N. Wanderka, “Microstructure features of high-entropy equiatomic cast AlCrFeCoNiCu alloys,” Phys. Met. Metallogr. 114 (6), 514–520 (2013). CrossRef
10.
go back to reference W. Ge, B. Wu, S. Wang, S. Xu, C. Shang, Z. Zhang, and Y. Wang, “Characterization and properties of CuZrAlTiNi high entropy alloy coating obtained by mechanical alloying and vacuum hot pressing sintering,” Adv. Powder Technol. 28 (10), 2556–2563 (2017). CrossRef W. Ge, B. Wu, S. Wang, S. Xu, C. Shang, Z. Zhang, and Y. Wang, “Characterization and properties of CuZrAlTiNi high entropy alloy coating obtained by mechanical alloying and vacuum hot pressing sintering,” Adv. Powder Technol. 28 (10), 2556–2563 (2017). CrossRef
11.
go back to reference D. Kumar, O. Maulik, A. S. Bagri, Y. V. S. S. Prasad, and V. Kumar, “Microstructure and characterization of mechanically alloyed equiatomic AlCuCrFeMnW high entropy alloy,” Mater. Today 3 (9), 2926–2933 (2016). D. Kumar, O. Maulik, A. S. Bagri, Y. V. S. S. Prasad, and V. Kumar, “Microstructure and characterization of mechanically alloyed equiatomic AlCuCrFeMnW high entropy alloy,” Mater. Today 3 (9), 2926–2933 (2016).
12.
go back to reference L. J. Zhang, P. F. Yu, M. D. Zhang, D. J. Liu, Z. Zhou, M. Z. Ma, P. K. Liaw, G. Li, and R. P. Liu, “Microstructure and mechanical behaviors of Gd xCoCrCuFeNi high-entropy alloys,” Mater. Sci. Eng., A 707, 708–716 (2017). CrossRef L. J. Zhang, P. F. Yu, M. D. Zhang, D. J. Liu, Z. Zhou, M. Z. Ma, P. K. Liaw, G. Li, and R. P. Liu, “Microstructure and mechanical behaviors of Gd xCoCrCuFeNi high-entropy alloys,” Mater. Sci. Eng., A 707, 708–716 (2017). CrossRef
13.
go back to reference X. Qiu, “Microstructure, hardness and corrosion resistance of Al 2CoCrCuFeNiTi x high-entropy alloy coatings prepared by rapid solidification,” J. Alloys Compd. 735, 359–364 (2018). CrossRef X. Qiu, “Microstructure, hardness and corrosion resistance of Al 2CoCrCuFeNiTi x high-entropy alloy coatings prepared by rapid solidification,” J. Alloys Compd. 735, 359–364 (2018). CrossRef
14.
go back to reference N. D. Stepanov, D. G. Shaysultanov, G. A. Salishchev, M. A. Tikhonovsky, E. E. Oleynik, A. S. Tortika, and O. N. Senkov, “Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiV x high entropy alloys,” J. Alloys Compd. 628, 170–185 (2015). CrossRef N. D. Stepanov, D. G. Shaysultanov, G. A. Salishchev, M. A. Tikhonovsky, E. E. Oleynik, A. S. Tortika, and O. N. Senkov, “Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiV x high entropy alloys,” J. Alloys Compd. 628, 170–185 (2015). CrossRef
15.
go back to reference A. Verma, P. Tarate, A. C. Abhyankar, M. R. Mohape, D. S. Gowtam, V. P. Deshmukh, and T. Shanmugasundaram, “High temperature wear in CoCrFeNiCu x high entropy alloys: the role of Cu,” Scr. Mater. 161, 28–31 (2019). CrossRef A. Verma, P. Tarate, A. C. Abhyankar, M. R. Mohape, D. S. Gowtam, V. P. Deshmukh, and T. Shanmugasundaram, “High temperature wear in CoCrFeNiCu x high entropy alloys: the role of Cu,” Scr. Mater. 161, 28–31 (2019). CrossRef
16.
go back to reference Y. J. Hsu, W. C. Chiang, and J. K. Wu, “Corrosion behavior of FeCoNiCrCu x high-entropy alloys in 3.5% sodium chloride solution,” Mater. Chem. Phys. 92 (1), 112–117 (2005). CrossRef Y. J. Hsu, W. C. Chiang, and J. K. Wu, “Corrosion behavior of FeCoNiCrCu x high-entropy alloys in 3.5% sodium chloride solution,” Mater. Chem. Phys. 92 (1), 112–117 (2005). CrossRef
17.
go back to reference J. Chiang, B. Lawrence, J. D. Boyd, and A. K. Pilkey, “Effect of microstructure on retained austenite stability and work hardening of TRIP steels,” Mater. Sci. Eng., A 528 (13–14), 4516–4521 (2011). CrossRef J. Chiang, B. Lawrence, J. D. Boyd, and A. K. Pilkey, “Effect of microstructure on retained austenite stability and work hardening of TRIP steels,” Mater. Sci. Eng., A 528 (13–14), 4516–4521 (2011). CrossRef
Metadata
Title
A Novel Cu-Containing Al0.5CrCuFeV High-Entropy Alloy with a Balanced Strength-Ductility Trade-Off
Authors
J. J. Yi
L. Yang
M. Q. Xu
L. Wang
Publication date
18-08-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 13/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21130111