Skip to main content
Top
Published in:

26-09-2024

A Novel Deep Learning-Driven Smart System for Lane Change Decision-Making

Authors: D. Deva Hema, T. Rajeeth Jaison

Published in: International Journal of Intelligent Transportation Systems Research | Issue 3/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article introduces a novel deep learning-driven smart system designed to accurately predict lane changes in autonomous vehicles. The system leverages a Deep Belief Network (DBN) for lane change decision-making and an enhanced Long Short-Term Memory (LSTM) model optimized by Improved Grey Wolf Optimization for trajectory prediction. The combination of these advanced techniques aims to improve the safety and efficiency of lane change maneuvers in autonomous driving. The study compares the proposed model with existing methods, demonstrating significant enhancements in accuracy, precision, and overall performance. By addressing the complexities of lane change behavior, this research contributes to the development of more reliable and intelligent transportation systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
go back to reference Zheng, Z., Ahn, S., Monsere, C.M.: Impact of traffic oscillations on freeway crash occurrences. Accid. Anal. Prev. 42, 626–636 (2010)CrossRef Zheng, Z., Ahn, S., Monsere, C.M.: Impact of traffic oscillations on freeway crash occurrences. Accid. Anal. Prev. 42, 626–636 (2010)CrossRef
2.
go back to reference Yang, D., Zheng, S., Wen, C., Jin, P.J., Ran, B.: A dynamic lane-changing trajectory planning model for automated vehicles. Transp. Res. Part. C Emerg. Technol. 95, 228–247 (2018)CrossRef Yang, D., Zheng, S., Wen, C., Jin, P.J., Ran, B.: A dynamic lane-changing trajectory planning model for automated vehicles. Transp. Res. Part. C Emerg. Technol. 95, 228–247 (2018)CrossRef
3.
go back to reference Yu, H., Tseng, H.E., Langari, R.: A human-like game theory-based controller for automatic lane changing. Transp. Res. Part. C Emerg. Technol. 88, 140–158 (2018)CrossRef Yu, H., Tseng, H.E., Langari, R.: A human-like game theory-based controller for automatic lane changing. Transp. Res. Part. C Emerg. Technol. 88, 140–158 (2018)CrossRef
4.
go back to reference Kesting, A., Treiber, M., Helbing, D.: General lane-changing model MOBIL for car-following models. Transp. Res. Rec 1999, 86–94 (2007)CrossRef Kesting, A., Treiber, M., Helbing, D.: General lane-changing model MOBIL for car-following models. Transp. Res. Rec 1999, 86–94 (2007)CrossRef
5.
go back to reference Chovan, John D., Louis Tijerina, Graham Alexander, and Donald L. Hendricks.: Examination of lane change crashes and potential IVHS countermeasures. No. DOT HS 808 071. United States. Joint Program Office for Intelligent Transportation Systems (1994) Chovan, John D., Louis Tijerina, Graham Alexander, and Donald L. Hendricks.: Examination of lane change crashes and potential IVHS countermeasures. No. DOT HS 808 071. United States. Joint Program Office for Intelligent Transportation Systems (1994)
6.
go back to reference Kumar, P., Perrollaz, M., Lefevre, S., Laugier, C.: Learning-based approach for online lane change intention prediction. In: 2013 IEEE Intelligent Vehicles Symposium (IV), pp. 797–802. IEEE (2013) Kumar, P., Perrollaz, M., Lefevre, S., Laugier, C.: Learning-based approach for online lane change intention prediction. In: 2013 IEEE Intelligent Vehicles Symposium (IV), pp. 797–802. IEEE (2013)
7.
go back to reference Gao, J., Murphey, Y.L., Zhu, H.: Multivariate time series prediction of lane changing behavior using deep neural network. Appl. Intell. 48, 3523–3537 (2018)CrossRef Gao, J., Murphey, Y.L., Zhu, H.: Multivariate time series prediction of lane changing behavior using deep neural network. Appl. Intell. 48, 3523–3537 (2018)CrossRef
8.
go back to reference Yao, W., Zhao, H., Bonnifait, P., Zha, H.: Lane change trajectory prediction by using recorded human driving data. In: 2013 IEEE Intelligent Vehicles Symposium (IV), pp. 430–436. IEEE (2013) Yao, W., Zhao, H., Bonnifait, P., Zha, H.: Lane change trajectory prediction by using recorded human driving data. In: 2013 IEEE Intelligent Vehicles Symposium (IV), pp. 430–436. IEEE (2013)
9.
go back to reference Hunt, J.G., Lyons, G.D.: Modelling dual carriageway lane changing using neural networks. Transp. Res. Part C Emerg. Technol. 2, 231–245 (1994)CrossRef Hunt, J.G., Lyons, G.D.: Modelling dual carriageway lane changing using neural networks. Transp. Res. Part C Emerg. Technol. 2, 231–245 (1994)CrossRef
10.
go back to reference Ke, M., Wang, H.: Lane-changing decision model for connected and automated vehicle based on back-propagation neural network. In: International Conference on Transportation and Development 2020, pp. 163–173. American Society of Civil Engineers Reston, VA (2020) Ke, M., Wang, H.: Lane-changing decision model for connected and automated vehicle based on back-propagation neural network. In: International Conference on Transportation and Development 2020, pp. 163–173. American Society of Civil Engineers Reston, VA (2020)
11.
go back to reference Ding, C., Wang, W., Wang, X., Baumann, M.: A neural network model for driver’s lane-changing trajectory prediction in urban traffic flow. Math. Probl. Eng. (2013) Ding, C., Wang, W., Wang, X., Baumann, M.: A neural network model for driver’s lane-changing trajectory prediction in urban traffic flow. Math. Probl. Eng. (2013)
12.
go back to reference Gao, J., Zhu, H., Murphey, Y.L.: Collision avoidance control for advanced driver assistance system based on deep discriminant model. In: Proceedings of the 2018 International Conference on Artificial Intelligence and Pattern Recognition - AIPR 2018, pp. 79–85. ACM Press, New York, New York, USA (2018) Gao, J., Zhu, H., Murphey, Y.L.: Collision avoidance control for advanced driver assistance system based on deep discriminant model. In: Proceedings of the 2018 International Conference on Artificial Intelligence and Pattern Recognition - AIPR 2018, pp. 79–85. ACM Press, New York, New York, USA (2018)
13.
go back to reference Li, G., Li, S.E., Cheng, B., Green, P.: Estimation of driving style in naturalistic highway traffic using maneuver transition probabilities. Transp. Res. Part C Emerg. Technol. 74, 113–125 (2017)CrossRef Li, G., Li, S.E., Cheng, B., Green, P.: Estimation of driving style in naturalistic highway traffic using maneuver transition probabilities. Transp. Res. Part C Emerg. Technol. 74, 113–125 (2017)CrossRef
14.
go back to reference Xing, Y., Lv, C., Wang, H., Wang, H., Ai, Y., Cao, D., Velenis, E., Wang, F.-Y.: Driver lane change intention inference for intelligent vehicles: framework, survey, and challenges. IEEE Trans. Veh. Technol. 68, 4377–4390 (2019)CrossRef Xing, Y., Lv, C., Wang, H., Wang, H., Ai, Y., Cao, D., Velenis, E., Wang, F.-Y.: Driver lane change intention inference for intelligent vehicles: framework, survey, and challenges. IEEE Trans. Veh. Technol. 68, 4377–4390 (2019)CrossRef
15.
go back to reference Li, X., Wang, W., Roetting, M.: Estimating driver’s lane-change intent considering driving style and contextual traffic. IEEE Trans. Intell. Transp. Syst. 20, 3258–3271 (2018)CrossRef Li, X., Wang, W., Roetting, M.: Estimating driver’s lane-change intent considering driving style and contextual traffic. IEEE Trans. Intell. Transp. Syst. 20, 3258–3271 (2018)CrossRef
16.
go back to reference Wang, C., Li, Z., Fu, R., Zhang, M., Sun, Q.: Lane change safety assessment of coaches in naturalistic driving state. Saf. Sci. 119, 126–132 (2019)CrossRef Wang, C., Li, Z., Fu, R., Zhang, M., Sun, Q.: Lane change safety assessment of coaches in naturalistic driving state. Saf. Sci. 119, 126–132 (2019)CrossRef
17.
go back to reference Dou, Y., Yan, F., Feng, D.: Lane changing prediction at highway lane drops using support vector machine and artificial neural network classifiers. In: 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 901–906. IEEE (2016) Dou, Y., Yan, F., Feng, D.: Lane changing prediction at highway lane drops using support vector machine and artificial neural network classifiers. In: 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 901–906. IEEE (2016)
18.
go back to reference Xing, Y., Lv, C., Wang, H., Cao, D., Velenis, E.: An ensemble deep learning approach for driver lane change intention inference. Transp. Res. Part C Emerg. Technol. 115, 102615 (2020)CrossRef Xing, Y., Lv, C., Wang, H., Cao, D., Velenis, E.: An ensemble deep learning approach for driver lane change intention inference. Transp. Res. Part C Emerg. Technol. 115, 102615 (2020)CrossRef
21.
go back to reference Khanum, A., Lee, C.-Y., Yang, C.-S.: Deep-learning-based network for lane following in autonomous vehicles. Electronics 11, 3084 (2022)CrossRef Khanum, A., Lee, C.-Y., Yang, C.-S.: Deep-learning-based network for lane following in autonomous vehicles. Electronics 11, 3084 (2022)CrossRef
22.
go back to reference Mahajan, V., Katrakazas, C., Antoniou, C.: Prediction of lane-changing maneuvers with automatic labeling and deep learning. Transp. Res. Rec 2674, 336–347 (2020)CrossRef Mahajan, V., Katrakazas, C., Antoniou, C.: Prediction of lane-changing maneuvers with automatic labeling and deep learning. Transp. Res. Rec 2674, 336–347 (2020)CrossRef
23.
go back to reference Mozaffari, S., Arnold, E., Dianati, M., Fallah, S.: Early lane change prediction for automated driving systems using multi-task attention-based convolutional neural networks. IEEE Trans. Intell. Veh. 7, 758–770 (2022)CrossRef Mozaffari, S., Arnold, E., Dianati, M., Fallah, S.: Early lane change prediction for automated driving systems using multi-task attention-based convolutional neural networks. IEEE Trans. Intell. Veh. 7, 758–770 (2022)CrossRef
24.
go back to reference Du.L, Chen.W, Ji.J, Pei.Z, Tong.B, Zheng.H.: A novel intelligent approach to lane‐change behavior prediction for intelligent and connected vehicles. Computational Intelligence and Neuroscience 2022: (2022): 9516218 Du.L, Chen.W, Ji.J, Pei.Z, Tong.B, Zheng.H.: A novel intelligent approach to lane‐change behavior prediction for intelligent and connected vehicles. Computational Intelligence and Neuroscience 2022: (2022): 9516218
25.
go back to reference Zhang, Y., Shi, X., Zhang, S., Abraham, A.: A xgboost-based lane change prediction on time series data using feature engineering for autopilot vehicles. IEEE Trans. Intell. Transp. Syst. 23, 19187–19200 (2022)CrossRef Zhang, Y., Shi, X., Zhang, S., Abraham, A.: A xgboost-based lane change prediction on time series data using feature engineering for autopilot vehicles. IEEE Trans. Intell. Transp. Syst. 23, 19187–19200 (2022)CrossRef
26.
go back to reference Ashfaq, F., Ghoniem, R.M., Jhanjhi, N.Z., Khan, N.A., Algarni, A.D.: Using dual attention BiLSTM to predict vehicle lane changing maneuvers on highway dataset. Systems 11, 196 (2023)CrossRef Ashfaq, F., Ghoniem, R.M., Jhanjhi, N.Z., Khan, N.A., Algarni, A.D.: Using dual attention BiLSTM to predict vehicle lane changing maneuvers on highway dataset. Systems 11, 196 (2023)CrossRef
27.
go back to reference Yan. L., Feng. J., Jin.W. and Lu.: Lane-changing decision-making model for intelligent vehicle based on a convolutional neural network-gated recurrent unit combination. Available at SSRN 4588198(2023) Yan. L., Feng. J., Jin.W. and Lu.: Lane-changing decision-making model for intelligent vehicle based on a convolutional neural network-gated recurrent unit combination. Available at SSRN 4588198(2023)
28.
go back to reference Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006)MathSciNetCrossRef Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006)MathSciNetCrossRef
29.
30.
go back to reference Gao.Z.M. and Zhao.J.: An improved grey wolf optimization algorithm with variable weights. Computational Intelligence and Neuroscience. p.2981282(2019) Gao.Z.M. and Zhao.J.: An improved grey wolf optimization algorithm with variable weights. Computational Intelligence and Neuroscience. p.2981282(2019)
31.
go back to reference Teng, Z., Lv, J., Guo, L.: An improved hybrid grey wolf optimization algorithm. Soft Comput. 23, 6617–6631 (2019)CrossRef Teng, Z., Lv, J., Guo, L.: An improved hybrid grey wolf optimization algorithm. Soft Comput. 23, 6617–6631 (2019)CrossRef
33.
go back to reference Li, K., Wang, X., Xu, Y., Wang, J.: Lane changing intention recognition based on speech recognition models. Transp. Res. Part C Emerg. Technol. 69, 497–514 (2016)CrossRef Li, K., Wang, X., Xu, Y., Wang, J.: Lane changing intention recognition based on speech recognition models. Transp. Res. Part C Emerg. Technol. 69, 497–514 (2016)CrossRef
Metadata
Title
A Novel Deep Learning-Driven Smart System for Lane Change Decision-Making
Authors
D. Deva Hema
T. Rajeeth Jaison
Publication date
26-09-2024
Publisher
Springer US
Published in
International Journal of Intelligent Transportation Systems Research / Issue 3/2024
Print ISSN: 1348-8503
Electronic ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-024-00421-4

Premium Partners