Skip to main content
Top
Published in:

04-07-2023

A novel design of graphene field-effect transistor-based out-phasing power amplifier

Authors: Mohsen Pooya, Mohammad Bagher Tavakoli, Farbod Setoudeh, Ashkan Horri, Ali Safari

Published in: Journal of Computational Electronics | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Graphene transistors are promising candidates for nano-circuits in telecommunication bands due to their high amplification bandwidth, extremely high carrier mobility, high saturation velocity, and the good electric conductance of the graphene channel. In this study, the parameters of a compact model are implemented in the Verilog-A language. An out-phasing power amplifier is designed using microstrip input/output matching, bias network, and quarter-wave Chireix divider/combiner over the frequency range of 2–4 GHz. The simulation results of graphene out-phasing power amplifier in advanced design system software show an increase of about 14 dB in the output gain, an intermodulation distortion (IMD) suppression of better than − 21.8 dBc, and a DC power consumption of 20 mW. In addition, the figures of merit of the proposed design show improvements in terms of gain, IMD, power consumption, and input/output return loss compared to other graphene amplifiers at different frequencies. A comparison of our design with some other amplifiers in various technologies at different frequencies shows a good gain and better IMD suppression in our design. Moreover, the power consumption, input/output return loss, and bandwidth of our strategy are relatively improved.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Safari, M.D.A., Tavakoli, M.B.: Distributed amplifier based on monolayer graphene field effect transistor. J. Circuits Syst. Comput. 28, 1950231 (2019)CrossRef Safari, M.D.A., Tavakoli, M.B.: Distributed amplifier based on monolayer graphene field effect transistor. J. Circuits Syst. Comput. 28, 1950231 (2019)CrossRef
2.
go back to reference Hanna, T.N.D., Frégonèse, S., Khenissa, M.S., Pallecchi, E., Happy, H.: 2.5 GHz integrated graphene RF power amplifier on SiC substrate. Solid-State Electron. 127, 26 (2016)CrossRef Hanna, T.N.D., Frégonèse, S., Khenissa, M.S., Pallecchi, E., Happy, H.: 2.5 GHz integrated graphene RF power amplifier on SiC substrate. Solid-State Electron. 127, 26 (2016)CrossRef
3.
go back to reference Peng, P., Wang, Z., Wei, Z., Tian, Z., Li, M., Ren, L., Fu, Y.: Radio-frequency power amplifier based on CVD graphene field-effect transistor. In: IEEE International Symposium on Circuits and Systems (ISCAS) (2019) Peng, P., Wang, Z., Wei, Z., Tian, Z., Li, M., Ren, L., Fu, Y.: Radio-frequency power amplifier based on CVD graphene field-effect transistor. In: IEEE International Symposium on Circuits and Systems (ISCAS) (2019)
4.
go back to reference Andersson, M.A., Habibpour, O., Vukusic, J., Stake, J.: 10 dB small-signal graphene FET amplifier. Electron. Lett. 48, 861 (2012)CrossRef Andersson, M.A., Habibpour, O., Vukusic, J., Stake, J.: 10 dB small-signal graphene FET amplifier. Electron. Lett. 48, 861 (2012)CrossRef
5.
go back to reference Sang, L., Xu, Y., Wu, Y., Chen, R.: Device and compact circuit-level modeling of graphene field-effect transistors for RF and microwave applications. IEEE Trans. Circuits Syst. I Reg. Pap. 65, 2559 (2018)CrossRef Sang, L., Xu, Y., Wu, Y., Chen, R.: Device and compact circuit-level modeling of graphene field-effect transistors for RF and microwave applications. IEEE Trans. Circuits Syst. I Reg. Pap. 65, 2559 (2018)CrossRef
6.
go back to reference Aguirre-Morales, J.D., Frégonèse, S., Dwivedi, A.D.D., Zimmer, T.: Towards amplifier design with a SiC graphene field-effect transistor. In: IEEE International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (2015) Aguirre-Morales, J.D., Frégonèse, S., Dwivedi, A.D.D., Zimmer, T.: Towards amplifier design with a SiC graphene field-effect transistor. In: IEEE International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (2015)
7.
go back to reference Lee, J., Seo, D.H., Shin, H., Park, S., Chung, H.-J.: Step-by-step implementation of an amplifier circuit with a graphene field-effect transistor on a printed-circuit board. Current Appl. Phys. 14, 1057 (2014)CrossRef Lee, J., Seo, D.H., Shin, H., Park, S., Chung, H.-J.: Step-by-step implementation of an amplifier circuit with a graphene field-effect transistor on a printed-circuit board. Current Appl. Phys. 14, 1057 (2014)CrossRef
8.
go back to reference Yu, C., He, Z.Z., Liu, Q.B., Song, X.B., Xu, P., Han, T.T., Li, J., Feng, Z.H., Cai, S.J.: Graphene amplifier MMIC on SiC substrate. IEEE Electron. Dev. Lett. 37, 684 (2015)CrossRef Yu, C., He, Z.Z., Liu, Q.B., Song, X.B., Xu, P., Han, T.T., Li, J., Feng, Z.H., Cai, S.J.: Graphene amplifier MMIC on SiC substrate. IEEE Electron. Dev. Lett. 37, 684 (2015)CrossRef
9.
go back to reference Petrone, N., Meric, I., Hone, J., Shepard. K.L.: Graphene field-effect transistors with gigahertz- frequency power gain on flexible substrates. Nano Lett. 13(1), 121–125 (2013)CrossRef Petrone, N., Meric, I., Hone, J., Shepard. K.L.: Graphene field-effect transistors with gigahertz- frequency power gain on flexible substrates. Nano Lett. 13(1), 121–125 (2013)CrossRef
10.
go back to reference Wang, Z., et al.: Stability of Radio-Frequency Graphene Field-Effect Transistors in Ambient. IOP Ebooks (2019)CrossRef Wang, Z., et al.: Stability of Radio-Frequency Graphene Field-Effect Transistors in Ambient. IOP Ebooks (2019)CrossRef
11.
go back to reference Feijoo, P.C., et al.: Short channel effects in graphene-based field effect transistors targeting radio-frequency applications. 2D Materials 3, 025036 (2016)CrossRef Feijoo, P.C., et al.: Short channel effects in graphene-based field effect transistors targeting radio-frequency applications. 2D Materials 3, 025036 (2016)CrossRef
12.
go back to reference Gorre, P., et al.: A 64 dBΩ, 25 Gb/s GFET based transimpedance amplifier with UWB resonator for optical radar detection in medical applications. Microelectron. J. 111, 105026 (2021)CrossRef Gorre, P., et al.: A 64 dBΩ, 25 Gb/s GFET based transimpedance amplifier with UWB resonator for optical radar detection in medical applications. Microelectron. J. 111, 105026 (2021)CrossRef
13.
go back to reference Hamed, A., et al.: Integrated 10-GHz graphene FET amplifier. IEEE J. Microwaves 1, 821–826 (2021)CrossRef Hamed, A., et al.: Integrated 10-GHz graphene FET amplifier. IEEE J. Microwaves 1, 821–826 (2021)CrossRef
14.
go back to reference Lamberti, P., et al.: Tolerance analysis of a GFET transistor for aerospace and aeronautical application. IOP Conf. Ser. Mater. Sci. Eng. 1024, 012005 (2020)CrossRef Lamberti, P., et al.: Tolerance analysis of a GFET transistor for aerospace and aeronautical application. IOP Conf. Ser. Mater. Sci. Eng. 1024, 012005 (2020)CrossRef
15.
go back to reference Mura, M.L., et al.: Numerical evaluation of the effect of geometric tolerances on the high-frequency performance of graphene field-effect transistors. Nanomaterials 11, 3121 (2021)CrossRef Mura, M.L., et al.: Numerical evaluation of the effect of geometric tolerances on the high-frequency performance of graphene field-effect transistors. Nanomaterials 11, 3121 (2021)CrossRef
16.
go back to reference Safari, Ali, Dousti, M., Tavakoli, M.B.: Monolayer graphene field effect transistor based operational amplifier. J. Circuits Syst. Comput. 28, 1950052 (2018)CrossRef Safari, Ali, Dousti, M., Tavakoli, M.B.: Monolayer graphene field effect transistor based operational amplifier. J. Circuits Syst. Comput. 28, 1950052 (2018)CrossRef
17.
go back to reference Lyu, H., et al.: Graphene distributed amplifiers: generating desirable gain for graphene field-effect transistors. Sci. Rep. 5, 17649 (2015)CrossRef Lyu, H., et al.: Graphene distributed amplifiers: generating desirable gain for graphene field-effect transistors. Sci. Rep. 5, 17649 (2015)CrossRef
18.
go back to reference Vorobiev, A., et al.: Graphene field-effect transistors for millimeter wave amplifiers. In: IEEE International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (2019) Vorobiev, A., et al.: Graphene field-effect transistors for millimeter wave amplifiers. In: IEEE International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (2019)
19.
go back to reference Yu, C., et al.: Field effect transistors and low noise amplifier MMICs of monolayer graphene. IEEE Electron Dev. Lett. 42, 268–271 (2021)CrossRef Yu, C., et al.: Field effect transistors and low noise amplifier MMICs of monolayer graphene. IEEE Electron Dev. Lett. 42, 268–271 (2021)CrossRef
20.
go back to reference Afanasyev, P., Grebennikov, A., Farrell, R., Dooley, J.: Analysis and design of outphasing transmitter using class-E power amplifiers with shunt capacitances and shunt filters. IEEE Access 8, 208879 (2020)CrossRef Afanasyev, P., Grebennikov, A., Farrell, R., Dooley, J.: Analysis and design of outphasing transmitter using class-E power amplifiers with shunt capacitances and shunt filters. IEEE Access 8, 208879 (2020)CrossRef
21.
go back to reference Choi, S.-E., Ahn, H., Hur, J., Kim, K.-W., Nam, I., Choi, J., Lee, O.: A Fully Integrated compact outphasing CMOS power amplifier using a parallel-combining transformer with a tuning inductor method. MDPI Electron. 9, 257 (2020)CrossRef Choi, S.-E., Ahn, H., Hur, J., Kim, K.-W., Nam, I., Choi, J., Lee, O.: A Fully Integrated compact outphasing CMOS power amplifier using a parallel-combining transformer with a tuning inductor method. MDPI Electron. 9, 257 (2020)CrossRef
22.
go back to reference Li, M., Pang, J., Li, Y., Zhu, A.: Bandwidth enhancement of Doherty power amplifier using modified load modulation network. IEEE Trans. Circuits Syst. I Regul. Pap. 67, 1824 (2020)CrossRef Li, M., Pang, J., Li, Y., Zhu, A.: Bandwidth enhancement of Doherty power amplifier using modified load modulation network. IEEE Trans. Circuits Syst. I Regul. Pap. 67, 1824 (2020)CrossRef
23.
go back to reference Liang, C., Niubó-Alemán, T., Hahn, Y., Roblin, P., Reynoso-Hernandez, J.A.: Optimal two-way hybrid Doherty-outphasing power amplifier. In: IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR) (2020) Liang, C., Niubó-Alemán, T., Hahn, Y., Roblin, P., Reynoso-Hernandez, J.A.: Optimal two-way hybrid Doherty-outphasing power amplifier. In: IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR) (2020)
24.
go back to reference Moloudi, F., Jahanirad, H.: Broadband class-E power amplifier design using tunable output matching network. Int. J. Electron. Commun. (AEÜ). 118, 153142 (2020)CrossRef Moloudi, F., Jahanirad, H.: Broadband class-E power amplifier design using tunable output matching network. Int. J. Electron. Commun. (AEÜ). 118, 153142 (2020)CrossRef
25.
go back to reference Ogasawara, R., Takayama, Y., Ishikawa, R., Honjo, K.: A 3.9-GHz-band outphasing power amplifier with compact combiner based on dual-power-level design for wide dynamic-range operation. In: International microwave symposium IEEE. (2020) Ogasawara, R., Takayama, Y., Ishikawa, R., Honjo, K.: A 3.9-GHz-band outphasing power amplifier with compact combiner based on dual-power-level design for wide dynamic-range operation. In: International microwave symposium IEEE. (2020)
26.
go back to reference Gilasgar, M., Barlabé, A., Prade, L.: High-efficiency reconfigurable dual-band class-F power amplifier with harmonic control network using MEMS. IEEE Microwave Wirel. Compon. Lett. 30, 677 (2020)CrossRef Gilasgar, M., Barlabé, A., Prade, L.: High-efficiency reconfigurable dual-band class-F power amplifier with harmonic control network using MEMS. IEEE Microwave Wirel. Compon. Lett. 30, 677 (2020)CrossRef
27.
go back to reference Lee, M.-P., Kim, S., Hong, S.-J., Kim, D.-W.: Compact 20-W GaN internally matched power amplifier for 2.5 GHz to 6 GHz jammer systems. Micromachines 11, 375 (2020)CrossRef Lee, M.-P., Kim, S., Hong, S.-J., Kim, D.-W.: Compact 20-W GaN internally matched power amplifier for 2.5 GHz to 6 GHz jammer systems. Micromachines 11, 375 (2020)CrossRef
28.
go back to reference Xue, X., Wang, X., Luo, S., Li, R., Yang, J.: A design of high power Beidou L-band power amplifier. Int. Conf. Appl. Phys. Comput. 1650, 022017 (2020) Xue, X., Wang, X., Luo, S., Li, R., Yang, J.: A design of high power Beidou L-band power amplifier. Int. Conf. Appl. Phys. Comput. 1650, 022017 (2020)
29.
go back to reference Chen, K.J., Huang, S.: AlN passivation by plasma-enhanced atomic layer deposition for GaN-based power switches and power amplifiers. Semicond. Sci. Technol. 28, 074015 (2013)CrossRef Chen, K.J., Huang, S.: AlN passivation by plasma-enhanced atomic layer deposition for GaN-based power switches and power amplifiers. Semicond. Sci. Technol. 28, 074015 (2013)CrossRef
30.
go back to reference Cheng, Z., Zhang, M., Li, J., Liu, G.: A broadband high-efficiency Doherty power amplifier using symmetrical devices*. J. Semicond. 39, 045004 (2018)CrossRef Cheng, Z., Zhang, M., Li, J., Liu, G.: A broadband high-efficiency Doherty power amplifier using symmetrical devices*. J. Semicond. 39, 045004 (2018)CrossRef
31.
go back to reference Azizi, H., Dehghan, M., Davanib, A., Ghasemic, F.: Design, construction and test of RF solid state power amplifier for IRANCYC-10. J. Instrum. 13, P03007 (2018)CrossRef Azizi, H., Dehghan, M., Davanib, A., Ghasemic, F.: Design, construction and test of RF solid state power amplifier for IRANCYC-10. J. Instrum. 13, P03007 (2018)CrossRef
32.
33.
go back to reference Thiele, S.A., et al.: Modeling of graphene metal-oxidesemiconductor field-effect transistors with gapless large-area graphene channels. J. Appl. Phys. 107, 094505 (2010)CrossRef Thiele, S.A., et al.: Modeling of graphene metal-oxidesemiconductor field-effect transistors with gapless large-area graphene channels. J. Appl. Phys. 107, 094505 (2010)CrossRef
34.
go back to reference Thiele, S., Schwierz, F.: Modeling of the steady state characteristics of large-area graphene fieldeffect transistors. J. Appl. Phys. 110, 034506 (2011)CrossRef Thiele, S., Schwierz, F.: Modeling of the steady state characteristics of large-area graphene fieldeffect transistors. J. Appl. Phys. 110, 034506 (2011)CrossRef
35.
go back to reference Rodriguez, S., et al.: A comprehensive graphene FET model for circuit design. IEEE Trans. Electron Dev. 61, 1199 (2014)CrossRef Rodriguez, S., et al.: A comprehensive graphene FET model for circuit design. IEEE Trans. Electron Dev. 61, 1199 (2014)CrossRef
36.
go back to reference Pasadas, F., et al.: Small-signal model for 2D-material based FETs targeting radio-frequency applications: the importance of considering nonreciprocal capacitances. IEEE Trans. Electron Dev. 64, 4715 (2017)CrossRef Pasadas, F., et al.: Small-signal model for 2D-material based FETs targeting radio-frequency applications: the importance of considering nonreciprocal capacitances. IEEE Trans. Electron Dev. 64, 4715 (2017)CrossRef
37.
go back to reference Meric, I., et al.: Graphene field-effect transistors based on boron nitride gate dielectrics. Proc. IEEE 101, 1609 (2013)CrossRef Meric, I., et al.: Graphene field-effect transistors based on boron nitride gate dielectrics. Proc. IEEE 101, 1609 (2013)CrossRef
38.
39.
go back to reference Godoy, P.A.: Techniques for high-efficiency outphasing power amplifiers. Department of Electrical Engineering and Computer Science: Massachusetts Institute of Technology (2011) Godoy, P.A.: Techniques for high-efficiency outphasing power amplifiers. Department of Electrical Engineering and Computer Science: Massachusetts Institute of Technology (2011)
40.
go back to reference Song, S.M., et al.: Improved drain current saturation and voltage gain in graphene-on-silicon field effect transistors. Sci. Rep. 6, 25392 (2016)CrossRef Song, S.M., et al.: Improved drain current saturation and voltage gain in graphene-on-silicon field effect transistors. Sci. Rep. 6, 25392 (2016)CrossRef
41.
go back to reference Choi, D.-C., et al.: Selective AuCl3 doping of graphene for reducing contact resistance of graphene devices. Appl. Surf. Sci. 427, 48 (2017)CrossRef Choi, D.-C., et al.: Selective AuCl3 doping of graphene for reducing contact resistance of graphene devices. Appl. Surf. Sci. 427, 48 (2017)CrossRef
Metadata
Title
A novel design of graphene field-effect transistor-based out-phasing power amplifier
Authors
Mohsen Pooya
Mohammad Bagher Tavakoli
Farbod Setoudeh
Ashkan Horri
Ali Safari
Publication date
04-07-2023
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 4/2023
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02064-2