Skip to main content
Top

2017 | OriginalPaper | Chapter

A Novel Dynamic Hyper-graph Inference Framework for Computer Assisted Diagnosis of Neuro-Diseases

Authors : Yingying Zhu, Xiaofeng Zhu, Minjeong Kim, Daniel Kaufer, Guorong Wu

Published in: Information Processing in Medical Imaging

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently hyper-graph learning gains increasing attention in medical imaging area since the hyper-graph, a generalization of a graph, opts to characterize the complex subject-wise relationship behind multi-modal neuroimaging data. However, current hyper-graph methods mainly have two limitations: (1) The data representation encoded in the hyper-graph is learned only from the observed imaging features for each modality separately. Therefore, the learned subject-wise relationships are neither consistent across modalities nor fully consensus with the clinical labels or clinical scores. (2) The learning procedure of data representation is completely independent to the subsequent classification step. Since the data representation optimized in the feature domain is not exactly aligned with the clinical labels, such independent step-by-step workflow might result in sub-optimal classification. To address these limitations, we propose a novel dynamic hyper-graph inference framework, working in a semi-supervised manner, which iteratively estimates and adjusts the subject-wise relationship from multi-modal neuroimaging data until the learned data representation (encoded in the hyper-graph) achieves largest consensus with the observed clinical labels and scores. It is worth noting our inference framework is also flexible to integrate classification (identifying individuals with neuro-disease) and regression (predicting the clinical scores). We have demonstrated the performance of our proposed dynamic hyper-graph inference framework in identifying MCI (Mild Cognition Impairment) subjects and the fine-grained recognition of different progression stage of MCI, where we achieve more accurate diagnosis result than conventional counterpart methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhu, X., Suk, H.-I., Thung, K.-H., Zhu, Y., Wu, G., Shen, D.: Joint discriminative and representative feature selection for Alzheimer’s disease diagnosis. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, H.-I. (eds.) MLMI 2016. LNCS, vol. 10019, pp. 77–85. Springer, Cham (2016). doi:10.1007/978-3-319-47157-0_10 CrossRef Zhu, X., Suk, H.-I., Thung, K.-H., Zhu, Y., Wu, G., Shen, D.: Joint discriminative and representative feature selection for Alzheimer’s disease diagnosis. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, H.-I. (eds.) MLMI 2016. LNCS, vol. 10019, pp. 77–85. Springer, Cham (2016). doi:10.​1007/​978-3-319-47157-0_​10 CrossRef
2.
go back to reference Zhang, D.: Multi-modal multi-task learning for joint feature prediction of multiple regression and classification variables in Alzheimer’s disease. Neuroimage 59, 895–907 (2012)CrossRef Zhang, D.: Multi-modal multi-task learning for joint feature prediction of multiple regression and classification variables in Alzheimer’s disease. Neuroimage 59, 895–907 (2012)CrossRef
3.
go back to reference Suk, H., Shen, D.: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage 1 (2015) Suk, H., Shen, D.: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage 1 (2015)
4.
go back to reference Dong, P., Guo, Y., Shen, D., Wu, G.: Multi-atlas and multi-modal hippocampus segmentation for infant MR brain images by propagating anatomical labels on hypergraph. In: Wu, G., Coupé, P., Zhan, Y., Munsell, B., Rueckert, D. (eds.) Patch-MI 2015. LNCS, vol. 9467, pp. 188–196. Springer, Cham (2015). doi:10.1007/978-3-319-28194-0_23 CrossRef Dong, P., Guo, Y., Shen, D., Wu, G.: Multi-atlas and multi-modal hippocampus segmentation for infant MR brain images by propagating anatomical labels on hypergraph. In: Wu, G., Coupé, P., Zhan, Y., Munsell, B., Rueckert, D. (eds.) Patch-MI 2015. LNCS, vol. 9467, pp. 188–196. Springer, Cham (2015). doi:10.​1007/​978-3-319-28194-0_​23 CrossRef
5.
go back to reference Gao, Y., Wee, C.-Y., Kim, M., Giannakopoulos, P., Montandon, M.-L., Haller, S., Shen, D.: MCI identification by joint learning on multiple MRI data. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 78–85. Springer, Cham (2015). doi:10.1007/978-3-319-24571-3_10 CrossRef Gao, Y., Wee, C.-Y., Kim, M., Giannakopoulos, P., Montandon, M.-L., Haller, S., Shen, D.: MCI identification by joint learning on multiple MRI data. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 78–85. Springer, Cham (2015). doi:10.​1007/​978-3-319-24571-3_​10 CrossRef
6.
go back to reference Boyd, S., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3, 1–122 (2011)CrossRef Boyd, S., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3, 1–122 (2011)CrossRef
7.
go back to reference Smith, A.: Nonparametric regression on a graph. J. Comput. Graph. Stat. 20 (2011) Smith, A.: Nonparametric regression on a graph. J. Comput. Graph. Stat. 20 (2011)
8.
go back to reference Zhu, Y.: Convolutional sparse coding for trajectory reconstruction. TPAMI 37, 529–540 (2015)CrossRef Zhu, Y.: Convolutional sparse coding for trajectory reconstruction. TPAMI 37, 529–540 (2015)CrossRef
9.
go back to reference Zhu, Y., Cox, M., Lucey, S.: 3D motion reconstruction for real-world camera motion. In: CVPR, pp. 1–8 (2011) Zhu, Y., Cox, M., Lucey, S.: 3D motion reconstruction for real-world camera motion. In: CVPR, pp. 1–8 (2011)
10.
go back to reference Zhu, Y., Huang, D., Torre, F.D.L., Lucey, S.: Complex non-rigid motion 3D reconstruction by union of subspaces. In: CVPR, pp. 23–34 (2014) Zhu, Y., Huang, D., Torre, F.D.L., Lucey, S.: Complex non-rigid motion 3D reconstruction by union of subspaces. In: CVPR, pp. 23–34 (2014)
11.
go back to reference Thompson, P., et al.: Tracking Alzheimer’s disease. Ann. N. Y. Acad. Sci. 1097, 183–214 (2007)CrossRef Thompson, P., et al.: Tracking Alzheimer’s disease. Ann. N. Y. Acad. Sci. 1097, 183–214 (2007)CrossRef
12.
go back to reference Risacher, S., Saykin, A.: Neuroimaging biomarkers of neurodegenerative diseases and dementia. Semin. Neurol. 33, 386–416 (2013)CrossRef Risacher, S., Saykin, A.: Neuroimaging biomarkers of neurodegenerative diseases and dementia. Semin. Neurol. 33, 386–416 (2013)CrossRef
13.
go back to reference Reisberg, B., Ferris, S., Kluger, A., Franssen, E., Wegiel, J., De Leon, M.J.: Mild cognitive impairment (MCI): a historical perspective. Int. Psychogeriatr. 20, 18–31 (2008) Reisberg, B., Ferris, S., Kluger, A., Franssen, E., Wegiel, J., De Leon, M.J.: Mild cognitive impairment (MCI): a historical perspective. Int. Psychogeriatr. 20, 18–31 (2008)
14.
go back to reference Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D.: Alzheimer’s Disease Neuroimaging Initiative: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage, 55, 856–867 (2011) Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D.: Alzheimer’s Disease Neuroimaging Initiative: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage, 55, 856–867 (2011)
15.
go back to reference Ganguli, M., Dodge, H., Shen, C., DeKosky, S.T.: Mild cognitive impairment, amnestic type an epidemiologic study. Neurology 63, 115–121 (2004)CrossRef Ganguli, M., Dodge, H., Shen, C., DeKosky, S.T.: Mild cognitive impairment, amnestic type an epidemiologic study. Neurology 63, 115–121 (2004)CrossRef
16.
go back to reference Guo, X., Wang, Z., Li, K., Li, Z., Qi, Z., Jin, Z., et al.: Voxel-based assessment of gray and white matter volumes in Alzheimer’s disease. Neurosci. Lett. 468, 146–150 (2010)CrossRef Guo, X., Wang, Z., Li, K., Li, Z., Qi, Z., Jin, Z., et al.: Voxel-based assessment of gray and white matter volumes in Alzheimer’s disease. Neurosci. Lett. 468, 146–150 (2010)CrossRef
17.
go back to reference Wang, Z., Zhu, X., Adeli, E., Zhu, Y., Zu, C., Nie, F., Shen, D., Wu, G.: Progressive graph-based transductive learning for multi-modal classification of brain disorder disease. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 291–299. Springer, Cham (2016). doi:10.1007/978-3-319-46720-7_34 CrossRef Wang, Z., Zhu, X., Adeli, E., Zhu, Y., Zu, C., Nie, F., Shen, D., Wu, G.: Progressive graph-based transductive learning for multi-modal classification of brain disorder disease. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 291–299. Springer, Cham (2016). doi:10.​1007/​978-3-319-46720-7_​34 CrossRef
Metadata
Title
A Novel Dynamic Hyper-graph Inference Framework for Computer Assisted Diagnosis of Neuro-Diseases
Authors
Yingying Zhu
Xiaofeng Zhu
Minjeong Kim
Daniel Kaufer
Guorong Wu
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-59050-9_13

Premium Partner