Skip to main content
Top
Published in:

24-03-2022 | Original Article

A novel enhanced global exploration whale optimization algorithm based on Lévy flights and judgment mechanism for global continuous optimization problems

Authors: Jianxun Liu, Jinfei Shi, Fei Hao, Min Dai

Published in: Engineering with Computers | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Whale optimization algorithm (WOA) is a very popular meta-heuristic algorithm. When optimizing complex multi-dimensional problems, the WOA has problems such as poor convergence behavior and low exploration efficiency. To improve the convergence behavior of the WOA and strengthen its global exploration efficiency, we propose a novel enhanced global exploration whale optimization algorithm (EGE-WOA). First, Lévy flights have the ability to strengthen global space search. For unconstrained optimization problems and constrained optimization problems, the EGE-WOA introduces Lévy flights to enhance its global exploration efficiency. Then, the EGE-WOA improves its convergence behavior by introducing new convergent dual adaptive weights. Finally, according to the characteristics of sperm whales hunting by emitting high-frequency ultrasound, the EGE-WOA introduces a new mechanism for judging the predation status of whales. The judgment mechanism is to judge the three predation states of whales by judging the fitness value between the optimal whale individual and any whale individual. The proposed new judgment mechanism can indeed effectively improve the global exploration efficiency of the WOA. For the exploration efficiency of the unconstrained optimization problems and constrained optimization problems, the EGE-WOA combines the Lévy flights and judgment mechanism in different ways to achieve efficient exploration efficiency and better convergence behavior. The experimental results show that in the optimization process of 33 unconstrained benchmark functions and 6 constrained real cases, the mean and standard deviation of the EGE-WOA are better than other algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chavan PP, Rani BS, Murugan M, Chavan P (2020) A novel image compression model by adaptive vector quantization: modified rider optimization algorithm. Sadhana Acad Proc Eng Sci 45(1):1–15MathSciNet Chavan PP, Rani BS, Murugan M, Chavan P (2020) A novel image compression model by adaptive vector quantization: modified rider optimization algorithm. Sadhana Acad Proc Eng Sci 45(1):1–15MathSciNet
2.
go back to reference Montiel O, Sepúlveda R, Orozco-Rosas U (2015) Optimal path planning generation for mobile robots using parallel evolutionary artificial potential field. J Intell Rob Syst 79(2):237–257CrossRef Montiel O, Sepúlveda R, Orozco-Rosas U (2015) Optimal path planning generation for mobile robots using parallel evolutionary artificial potential field. J Intell Rob Syst 79(2):237–257CrossRef
3.
go back to reference Mortazavi A (2021) Solving structural optimization problems with discrete variables using interactive fuzzy search algorithm. Struct Eng Mech 79(2):247–265MathSciNet Mortazavi A (2021) Solving structural optimization problems with discrete variables using interactive fuzzy search algorithm. Struct Eng Mech 79(2):247–265MathSciNet
4.
go back to reference Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimization. Int J Bioinspir Comput 2(2):78–84 CrossRef Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimization. Int J Bioinspir Comput 2(2):78–84 CrossRef
5.
go back to reference Oliva D, Aziz MAE, Hassanien AE (2017) Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm. Appl Energy 200:141–154CrossRef Oliva D, Aziz MAE, Hassanien AE (2017) Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm. Appl Energy 200:141–154CrossRef
6.
go back to reference Kaveh A, Ghazzan MI (2017) Enhanced Whale optimization algorithm for sizing optimization of skeletal structures. Mech Based Des Struct Mach 45(3):345–362CrossRef Kaveh A, Ghazzan MI (2017) Enhanced Whale optimization algorithm for sizing optimization of skeletal structures. Mech Based Des Struct Mach 45(3):345–362CrossRef
7.
go back to reference Prakash DB, Lakshminarayana C (2016) Optimal siting of capacitors in radial distribution network using whale optimization algorithm. Alex Eng J 56(4):499–509CrossRef Prakash DB, Lakshminarayana C (2016) Optimal siting of capacitors in radial distribution network using whale optimization algorithm. Alex Eng J 56(4):499–509CrossRef
8.
go back to reference Reddy PDP, Reddy VCV, Manohar TG (2017) Whale optimization algorithm for optimal sizing of renewable resources for loss reduction in distribution systems. Renew Wind Water Solar 4(1):3CrossRef Reddy PDP, Reddy VCV, Manohar TG (2017) Whale optimization algorithm for optimal sizing of renewable resources for loss reduction in distribution systems. Renew Wind Water Solar 4(1):3CrossRef
9.
go back to reference Maeda K, Fukano Y, Yamamichi S, Nitta D, Kurata H (2011) An integrative and practical evolutionary optimization for a complex, dynamic model of biological networks. Bioprocess Biosyst Eng 34(4):433–446CrossRef Maeda K, Fukano Y, Yamamichi S, Nitta D, Kurata H (2011) An integrative and practical evolutionary optimization for a complex, dynamic model of biological networks. Bioprocess Biosyst Eng 34(4):433–446CrossRef
10.
go back to reference Goldfeld SM, Quandt RE, Trotter HF (1996) Maximization by quadratic hill-climbing. Econ J Econ Soc 541–551 Goldfeld SM, Quandt RE, Trotter HF (1996) Maximization by quadratic hill-climbing. Econ J Econ Soc 541–551
11.
go back to reference Abbasbandy S (2003) Improving Newton–Raphson method for nonlinear equations by modified adomian decomposition method. Appl Math Comput 145(2-3):887–893MathSciNetMATH Abbasbandy S (2003) Improving Newton–Raphson method for nonlinear equations by modified adomian decomposition method. Appl Math Comput 145(2-3):887–893MathSciNetMATH
13.
go back to reference Birdi J, Muraleedharan A, D’hooge J, Bertrand A (2021) Fast linear least-squares method for ultrasound attenuation and backscatter estimation. Ultrasonics 116:106503CrossRef Birdi J, Muraleedharan A, D’hooge J, Bertrand A (2021) Fast linear least-squares method for ultrasound attenuation and backscatter estimation. Ultrasonics 116:106503CrossRef
14.
go back to reference Liu J, Wang F, Zhao H, Han G (2017) Filtering algorithm and application of fuze echo signal based on LMS principle. J Proj Rock Missiles Guid 37(06):45–47 Liu J, Wang F, Zhao H, Han G (2017) Filtering algorithm and application of fuze echo signal based on LMS principle. J Proj Rock Missiles Guid 37(06):45–47
15.
go back to reference Yang X-S (2009) Firefly algorithms for multimodal optimization. In: International symposium on Stochastic algorithm. pp169–178 Yang X-S (2009) Firefly algorithms for multimodal optimization. In: International symposium on Stochastic algorithm. pp169–178
16.
go back to reference Yang X-S (2010) A new metaheuristic bat-inspired algorithm: nature inspired cooperative strategies for optimization. Springer, Berlin, pp 65–74MATH Yang X-S (2010) A new metaheuristic bat-inspired algorithm: nature inspired cooperative strategies for optimization. Springer, Berlin, pp 65–74MATH
19.
go back to reference Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69(7):46–61CrossRef Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69(7):46–61CrossRef
20.
go back to reference Heidari AA, Pahlavani P (2017) An efficient modified grey wolf optimizer with Lévy flight for optimization tasks. Appl Soft Comput J 60:115–134CrossRef Heidari AA, Pahlavani P (2017) An efficient modified grey wolf optimizer with Lévy flight for optimization tasks. Appl Soft Comput J 60:115–134CrossRef
22.
go back to reference Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27:495–513CrossRef Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27:495–513CrossRef
23.
go back to reference Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47CrossRef Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47CrossRef
24.
go back to reference Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22:52–67CrossRef Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22:52–67CrossRef
25.
26.
go back to reference Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872CrossRef Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872CrossRef
28.
go back to reference Chetty S, Adewumi AO (2014) Comparison study of swarm intelligence techniques for the annual crop planning problem. IEEE Trans Evol Comput 18(2):258–268CrossRef Chetty S, Adewumi AO (2014) Comparison study of swarm intelligence techniques for the annual crop planning problem. IEEE Trans Evol Comput 18(2):258–268CrossRef
29.
go back to reference Fister I, Yang XS, Brest J et al (2015) Analysis of randomisation methods in swarm intelligence. Int J Bioinspir Comput 7(1):36–49 Fister I, Yang XS, Brest J et al (2015) Analysis of randomisation methods in swarm intelligence. Int J Bioinspir Comput 7(1):36–49
30.
go back to reference Lalwani S, Kumar R, Deep K (2017) Multi-objective two level swarm intelligence approach for multiple RNA sequence structure alignment. Swarm Evol Comput 34:130–144CrossRef Lalwani S, Kumar R, Deep K (2017) Multi-objective two level swarm intelligence approach for multiple RNA sequence structure alignment. Swarm Evol Comput 34:130–144CrossRef
31.
go back to reference Gandomi AH, Alavi AH (2011) Multi-stage genetic programming: a new strategy to nonlinear system modeling. Inf Sci 181(23):5227–5239 CrossRef Gandomi AH, Alavi AH (2011) Multi-stage genetic programming: a new strategy to nonlinear system modeling. Inf Sci 181(23):5227–5239 CrossRef
32.
go back to reference Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95(5):51–67CrossRef Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95(5):51–67CrossRef
33.
go back to reference Khaled M, Samir S, Abdelghani B (2018) Whale optimization algorithm based optimal reactive power dispatch: a case study of the Algerian power system. Electr Power Syst Res 163(10):696–750 Khaled M, Samir S, Abdelghani B (2018) Whale optimization algorithm based optimal reactive power dispatch: a case study of the Algerian power system. Electr Power Syst Res 163(10):696–750
34.
go back to reference Yu Y, Wang H, Li N et al (2017) Automatic carrier landing system based on active disturbance rejection control with a novel parameters optimizer. Aerosp Sci Technol 69(10):149–160CrossRef Yu Y, Wang H, Li N et al (2017) Automatic carrier landing system based on active disturbance rejection control with a novel parameters optimizer. Aerosp Sci Technol 69(10):149–160CrossRef
35.
go back to reference Huiling C, Yueting X, Mingjing W, Xuehua Z (2019) A balanced whale optimization algorithm for constrained engineering design problems. Appl Math Model 71:45–59MathSciNetCrossRefMATH Huiling C, Yueting X, Mingjing W, Xuehua Z (2019) A balanced whale optimization algorithm for constrained engineering design problems. Appl Math Model 71:45–59MathSciNetCrossRefMATH
36.
go back to reference Mohammad T, Mohammad AM, Abushariah NI, Ibrahim A (2019) Improved whale optimization algorithm for feature selection in Arabic sentiment analysis. Appl Intell 49:1688–1707CrossRef Mohammad T, Mohammad AM, Abushariah NI, Ibrahim A (2019) Improved whale optimization algorithm for feature selection in Arabic sentiment analysis. Appl Intell 49:1688–1707CrossRef
37.
go back to reference Ying LING, Yongquan ZHOU, Qifang LUO (2017) Lévy flight trajectory-based whale optimization algorithm for global optimization. IEEE Access 5:6168–6186CrossRef Ying LING, Yongquan ZHOU, Qifang LUO (2017) Lévy flight trajectory-based whale optimization algorithm for global optimization. IEEE Access 5:6168–6186CrossRef
42.
go back to reference Kang SL, Zong WG (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194:3902–3933CrossRefMATH Kang SL, Zong WG (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194:3902–3933CrossRefMATH
43.
go back to reference Reynolds AM, Frye MA (2007) Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search. PLoS One 2:e354CrossRef Reynolds AM, Frye MA (2007) Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search. PLoS One 2:e354CrossRef
44.
go back to reference Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. International conference on computational intelligence for modelling, Vienna, Austria, pp 695–701. Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. International conference on computational intelligence for modelling, Vienna, Austria, pp 695–701.
46.
go back to reference Yelghi A, Köse C (2018) A modified firefly algorithm for global minimum optimization. Appl Soft Comput 62:29–44CrossRef Yelghi A, Köse C (2018) A modified firefly algorithm for global minimum optimization. Appl Soft Comput 62:29–44CrossRef
47.
go back to reference Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35CrossRef Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35CrossRef
Metadata
Title
A novel enhanced global exploration whale optimization algorithm based on Lévy flights and judgment mechanism for global continuous optimization problems
Authors
Jianxun Liu
Jinfei Shi
Fei Hao
Min Dai
Publication date
24-03-2022
Publisher
Springer London
Published in
Engineering with Computers / Issue 4/2023
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-022-01638-1