Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

02-11-2020 | Original Article

A novel feature learning framework for high-dimensional data classification

Journal:
International Journal of Machine Learning and Cybernetics
Authors:
Yanxia Li, Yi Chai, Hongpeng Yin, Bo Chen
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Feature extraction is an essential component in many classification tasks. Popular feature extraction approaches especially deep learning-based methods, need large training samples to achieve satisfactory performance. Although dictionary learning-based methods are successfully used for feature extraction on both small and large datasets, however, when dealing with high-dimensional datasets, a large number of dimensions also mask the discriminative information embedded in the data. To address these issues, a novel feature learning framework for high-dimensional data classification is proposed in this paper. Specially, to discard the irrelevant parts that derail the dictionary learning process, the dictionary is adaptively learnt in the low-dimensional space parameterized by a transformation matrix. To ensure that the learned features are discriminative for the classifier, the classification results in turn are used to guide the dictionary and transformation matrix learning process. Compared with other methods, the proposed method simultaneously exploits the dimension reduction, dictionary learning and classifier learning in one optimization framework, which enables the method to extract low-dimensional and discriminative features. Experimental results on several benchmark datasets demonstrate the superior performance of the proposed method for high-dimensional data classification task, particularly when the number of training samples is small.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article