Skip to main content
Top
Published in: Engineering with Computers 5/2022

07-10-2022 | Original Article

A novel fully adaptive truly explicit time-marching methodology for the solution of hyperbolic bioheat conduction models

Authors: Lucas Ruffo Pinto, Delfim Soares Jr., Webe João Mansur

Published in: Engineering with Computers | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, a truly explicit time-marching methodology is discussed for the time-domain solution for heat propagation considering the dual-phase-lag (DPL) bioheat model. The proposed technique considers self-adjustable time integration parameters, and it is approached together with automated calculations of domain decomposition and subcycling, providing a very versatile fully adaptive solution algorithm. The discussed domain decomposition procedure automatically divides the domain model into different subdomains (according to the properties of the discretized problem), in which different time-step values are applied, enabling more efficient (yet stable) explicit analyses. Expressions for the adaptive time integration parameters of the method and for the critical time steps of the subdomains of the model are presented and discussed. At the end of the paper, benchmark and applied examples are studied, showing the excellent performance of the proposed approach and the great effectiveness of the discussed fully adaptive formulation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Minkowycz WJ, Sparrow EM, Murthy JY, Abraham JP (2007) Handbook of Numerical Heat Transfer, 2nd edn. Wiley, New Jersey Minkowycz WJ, Sparrow EM, Murthy JY, Abraham JP (2007) Handbook of Numerical Heat Transfer, 2nd edn. Wiley, New Jersey
2.
go back to reference Liu J, Xu LX (2000) Boundary information based diagnostics on the thermal states of biological bodies. Int J Heat Mass Transf 43(16):2827–39MATHCrossRef Liu J, Xu LX (2000) Boundary information based diagnostics on the thermal states of biological bodies. Int J Heat Mass Transf 43(16):2827–39MATHCrossRef
3.
go back to reference Torvi DA, Dale JD (1994) A finite element model of skin subjected to a flash fire. J Biomech Eng 116(3):250–5CrossRef Torvi DA, Dale JD (1994) A finite element model of skin subjected to a flash fire. J Biomech Eng 116(3):250–5CrossRef
4.
go back to reference Dai W, Yu H, Nassar R (2004) A fourth-order compact finite-difference scheme for solving a 1-D pennes’ bioheat transfer equation in a triple-layered skin structure. Numer Heat Transf, B: Fundam 46(5):447–61CrossRef Dai W, Yu H, Nassar R (2004) A fourth-order compact finite-difference scheme for solving a 1-D pennes’ bioheat transfer equation in a triple-layered skin structure. Numer Heat Transf, B: Fundam 46(5):447–61CrossRef
5.
go back to reference Chan CL (1992) Boundary element method analysis for the bioheat transfer equation. J Biomech Eng 113(4):358–65CrossRef Chan CL (1992) Boundary element method analysis for the bioheat transfer equation. J Biomech Eng 113(4):358–65CrossRef
6.
go back to reference Tzou DY. A unified field approach for heat conduction from macro- to microscales. J. Heat Transfer. 1995;117. Tzou DY. A unified field approach for heat conduction from macro- to microscales. J. Heat Transfer. 1995;117.
7.
go back to reference Liu J, Chen X, Xu LX (1999) New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating. IEEE Trans Biomed Eng. 46(4):420–8CrossRef Liu J, Chen X, Xu LX (1999) New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating. IEEE Trans Biomed Eng. 46(4):420–8CrossRef
8.
go back to reference Özen Ş, Helhel S, Çerezci O (2008) Heat analysis of biological tissue exposed to microwave by using thermal wave model of bio-heat transfer (TWMBT). Burns 34(1):45–49CrossRef Özen Ş, Helhel S, Çerezci O (2008) Heat analysis of biological tissue exposed to microwave by using thermal wave model of bio-heat transfer (TWMBT). Burns 34(1):45–49CrossRef
9.
go back to reference Liu KC (2008) Thermal propagation analysis for living tissue with surface heating. Int J Therm Sci. 47(5):507–513CrossRef Liu KC (2008) Thermal propagation analysis for living tissue with surface heating. Int J Therm Sci. 47(5):507–513CrossRef
10.
go back to reference Xu F, Seffen KA, Lu TJ (2008) Non-Fourier analysis of skin biothermomechanics. Int J Heat Mass Transf 51(9–10):2237–2259MATHCrossRef Xu F, Seffen KA, Lu TJ (2008) Non-Fourier analysis of skin biothermomechanics. Int J Heat Mass Transf 51(9–10):2237–2259MATHCrossRef
11.
go back to reference Loureiro FS, Wrobel LC, Mansur WJ (2012) Solution of hyperbolic bioheat transfer problems by numerical Green’s functions: the ExGA-linear θ method. J Braz Soc Mech Sci Eng 34(4):459–468CrossRef Loureiro FS, Wrobel LC, Mansur WJ (2012) Solution of hyperbolic bioheat transfer problems by numerical Green’s functions: the ExGA-linear θ method. J Braz Soc Mech Sci Eng 34(4):459–468CrossRef
12.
go back to reference Cattaneo C (1958) A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compte Rendus. 247(4):431MATH Cattaneo C (1958) A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compte Rendus. 247(4):431MATH
13.
go back to reference Vernotte P (1961) Some possible complications in the phenomena of thermal studies. Compete Rendus 252:2190–2191 Vernotte P (1961) Some possible complications in the phenomena of thermal studies. Compete Rendus 252:2190–2191
14.
go back to reference Tzou DY (2014) Macro- to microscale heat transfer: the lagging behavior, 2nd edn. John wiley & sons, New JerseyCrossRef Tzou DY (2014) Macro- to microscale heat transfer: the lagging behavior, 2nd edn. John wiley & sons, New JerseyCrossRef
15.
go back to reference Askarizadeh H, Ahmadikia H (2015) Analytical study on the transient heating of a two-dimensional skin tissue using parabolic and hyperbolic bioheat transfer equations. Appl Math Model 39(13):3704–20MathSciNetMATHCrossRef Askarizadeh H, Ahmadikia H (2015) Analytical study on the transient heating of a two-dimensional skin tissue using parabolic and hyperbolic bioheat transfer equations. Appl Math Model 39(13):3704–20MathSciNetMATHCrossRef
16.
go back to reference Hobiny AD, Abbas IA (2020) Nonlinear analysis of dual-phase lag bio-heat model in living tissues induced by laser irradiation. J Therm Stress 43(4):503–511CrossRef Hobiny AD, Abbas IA (2020) Nonlinear analysis of dual-phase lag bio-heat model in living tissues induced by laser irradiation. J Therm Stress 43(4):503–511CrossRef
17.
go back to reference Jasiński M, Majchrzak E, Turchan L (2016) Numerical analysis of the interactions between laser and soft tissues using generalized dual-phase lag equation. Appl Math Model 40(2):750–62MathSciNetMATHCrossRef Jasiński M, Majchrzak E, Turchan L (2016) Numerical analysis of the interactions between laser and soft tissues using generalized dual-phase lag equation. Appl Math Model 40(2):750–62MathSciNetMATHCrossRef
18.
go back to reference Zhang Q, Sun Y, Yang J (2021) Thermoelastic behavior of skin tissue induced by laser irradiation based on the generalized dual-phase lag model. J Therm Biol 100:103038CrossRef Zhang Q, Sun Y, Yang J (2021) Thermoelastic behavior of skin tissue induced by laser irradiation based on the generalized dual-phase lag model. J Therm Biol 100:103038CrossRef
19.
go back to reference Zhou H, Li P, Zuo W, Fang Y (2020) Dual-phase-lag thermoelastic damping models for micro/nanobeam resonators. Appl Math Model 79:31–51MathSciNetMATHCrossRef Zhou H, Li P, Zuo W, Fang Y (2020) Dual-phase-lag thermoelastic damping models for micro/nanobeam resonators. Appl Math Model 79:31–51MathSciNetMATHCrossRef
20.
go back to reference Liu L, Zheng L, Chen Y (2018) Macroscopic and microscopic anomalous diffusion in comb model with fractional dual-phase-lag model. Appl Math Model 62:629–637MathSciNetMATHCrossRef Liu L, Zheng L, Chen Y (2018) Macroscopic and microscopic anomalous diffusion in comb model with fractional dual-phase-lag model. Appl Math Model 62:629–637MathSciNetMATHCrossRef
21.
go back to reference Shah FA, Awana MI (2020) A computational wavelet method for solving dual-phase-lag model of bioheat transfer during hyperthermia treatment. Comput Math Methods 2(4):e1095MathSciNetCrossRef Shah FA, Awana MI (2020) A computational wavelet method for solving dual-phase-lag model of bioheat transfer during hyperthermia treatment. Comput Math Methods 2(4):e1095MathSciNetCrossRef
22.
go back to reference Kumar M, Rai KN, Rajeev. (2020) A study of fractional order dual-phase-lag bioheat transfer model. J Therm Biol 93:102661CrossRef Kumar M, Rai KN, Rajeev. (2020) A study of fractional order dual-phase-lag bioheat transfer model. J Therm Biol 93:102661CrossRef
23.
go back to reference Fahmy MA (2021) A new boundary element algorithm for a general solution of nonlinear space-time fractional dual-phase-lag bio-heat transfer problems during electromagnetic radiation. Case Stud Therm Eng. 25:100918CrossRef Fahmy MA (2021) A new boundary element algorithm for a general solution of nonlinear space-time fractional dual-phase-lag bio-heat transfer problems during electromagnetic radiation. Case Stud Therm Eng. 25:100918CrossRef
24.
go back to reference Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications INC, New YorkMATH Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications INC, New YorkMATH
25.
go back to reference Zienkiewicz O, Taylor R, Zhu JZ (2013) The Finite Element Method: its Basis and Fundamentals, 7th edn. Elsevier, AmsterdamMATH Zienkiewicz O, Taylor R, Zhu JZ (2013) The Finite Element Method: its Basis and Fundamentals, 7th edn. Elsevier, AmsterdamMATH
26.
go back to reference Soares D (2021) Three novel truly-explicit time-marching procedures considering adaptive dissipation control. Eng Comput 38:3251–3268CrossRef Soares D (2021) Three novel truly-explicit time-marching procedures considering adaptive dissipation control. Eng Comput 38:3251–3268CrossRef
27.
go back to reference Pinto LR, Soares D, Mansur WJ (2021) Elastodynamic wave propagation modelling in geological structures considering fully-adaptive explicit time-marching procedures. Soil Dyn Earthq Eng 150:106962CrossRef Pinto LR, Soares D, Mansur WJ (2021) Elastodynamic wave propagation modelling in geological structures considering fully-adaptive explicit time-marching procedures. Soil Dyn Earthq Eng 150:106962CrossRef
28.
go back to reference Gravouil A, Combescure A (2001) Multi-time-step explicit - implicit method for non-linear structural dynamics. Int J Numer Methods Eng 50(1):199–225MATHCrossRef Gravouil A, Combescure A (2001) Multi-time-step explicit - implicit method for non-linear structural dynamics. Int J Numer Methods Eng 50(1):199–225MATHCrossRef
29.
go back to reference Dujardin G, Lafitte P (2016) Asymptotic behaviour of splitting schemes involving time-subcycling techniques. IMA J Numer Anal 36(4):1804–1841MathSciNetMATHCrossRef Dujardin G, Lafitte P (2016) Asymptotic behaviour of splitting schemes involving time-subcycling techniques. IMA J Numer Anal 36(4):1804–1841MathSciNetMATHCrossRef
30.
go back to reference Soares D, Mansur WJ, Lima DL (2007) An explicit multi-level time-step algorithm to model the propagation of interacting acoustic-elastic waves using finite element/finite difference coupled procedures. CMES Comput Model Eng Sci. 17(1):19MathSciNetMATH Soares D, Mansur WJ, Lima DL (2007) An explicit multi-level time-step algorithm to model the propagation of interacting acoustic-elastic waves using finite element/finite difference coupled procedures. CMES Comput Model Eng Sci. 17(1):19MathSciNetMATH
31.
go back to reference Hulbert GM, Chung J (1996) Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Comput Methods Appl Mech Eng. 137(2):1785–188MathSciNetMATHCrossRef Hulbert GM, Chung J (1996) Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Comput Methods Appl Mech Eng. 137(2):1785–188MathSciNetMATHCrossRef
32.
go back to reference Noh G, Bathe KJ (2013) An explicit time integration scheme for the analysis of wave propagations. Comput Struct 129:178–193CrossRef Noh G, Bathe KJ (2013) An explicit time integration scheme for the analysis of wave propagations. Comput Struct 129:178–193CrossRef
33.
go back to reference Soares D (2021) A multi-level explicit time-marching procedure for structural dynamics and wave propagation models. Comput Methods Appl Mech Eng 375:1136MathSciNetMATHCrossRef Soares D (2021) A multi-level explicit time-marching procedure for structural dynamics and wave propagation models. Comput Methods Appl Mech Eng 375:1136MathSciNetMATHCrossRef
34.
go back to reference Soares D (2021) A novel single-step explicit time-marching procedure with improved dissipative, dispersive and stability properties. Comput Methods Appl Mech Eng 386:114077MathSciNetMATHCrossRef Soares D (2021) A novel single-step explicit time-marching procedure with improved dissipative, dispersive and stability properties. Comput Methods Appl Mech Eng 386:114077MathSciNetMATHCrossRef
35.
go back to reference Pennes HH (1998) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 85(1):5–34CrossRef Pennes HH (1998) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 85(1):5–34CrossRef
36.
go back to reference Nazmdeh H, Vahabi M, Nazari MA (2021) Finite element modeling of Non-Fourier heat transfer in a cancerous tissue with an injected fat layer during hyperthermia treatment. J Therm Biol 100:103073CrossRef Nazmdeh H, Vahabi M, Nazari MA (2021) Finite element modeling of Non-Fourier heat transfer in a cancerous tissue with an injected fat layer during hyperthermia treatment. J Therm Biol 100:103073CrossRef
37.
go back to reference Figueiredo AAA, Nascimentodo JG, Malheiros FC, Silva Ignacioda LH, Fernandes HC, Guimaraes G (2019) Breast tumor localization using skin surface temperatures from a 2D anatomic model without knowledge of the thermophysical properties. Comput Methods Programs Biomed 172:65–77CrossRef Figueiredo AAA, Nascimentodo JG, Malheiros FC, Silva Ignacioda LH, Fernandes HC, Guimaraes G (2019) Breast tumor localization using skin surface temperatures from a 2D anatomic model without knowledge of the thermophysical properties. Comput Methods Programs Biomed 172:65–77CrossRef
38.
go back to reference Paruch M (2020) Mathematical modeling of breast tumor destruction using fast heating during radiofrequency ablation. Materials 13(1):136CrossRef Paruch M (2020) Mathematical modeling of breast tumor destruction using fast heating during radiofrequency ablation. Materials 13(1):136CrossRef
39.
go back to reference Soares D, Wrobel LC (2018) Solution of hyperbolic bioheat conduction models based on adaptive time integrators. Finite Elem Anal Des 149:1–14MathSciNetCrossRef Soares D, Wrobel LC (2018) Solution of hyperbolic bioheat conduction models based on adaptive time integrators. Finite Elem Anal Des 149:1–14MathSciNetCrossRef
40.
go back to reference PDQ Adult Treatment Editorial Board. (2002) Breast Cancer Treatment During Pregnancy (PDQ®): Patient Version. In: PDQ Cancer Information Summaries. National Cancer Institute, US PDQ Adult Treatment Editorial Board. (2002) Breast Cancer Treatment During Pregnancy (PDQ®): Patient Version. In: PDQ Cancer Information Summaries. National Cancer Institute, US
41.
go back to reference Roetzel W, Xuan Y (1998) Transient response of the human limb to an external stimulus. Int J Heat Mass Transf 41(1):221–239MATHCrossRef Roetzel W, Xuan Y (1998) Transient response of the human limb to an external stimulus. Int J Heat Mass Transf 41(1):221–239MATHCrossRef
42.
go back to reference Feldmann A, Wili P, Maquer G, Zysset P (2018) The thermal conductivity of cortical and cancellous bone. Eur Cells Mater 35:25–33CrossRef Feldmann A, Wili P, Maquer G, Zysset P (2018) The thermal conductivity of cortical and cancellous bone. Eur Cells Mater 35:25–33CrossRef
43.
go back to reference Karmani S (2006) The thermal properties of bone and the effects of surgical intervention. Curr Orthop. 20(1):52–58CrossRef Karmani S (2006) The thermal properties of bone and the effects of surgical intervention. Curr Orthop. 20(1):52–58CrossRef
44.
go back to reference Liu KC, Chen HT (2009) Analysis for the dual-phase-lag bio-heat transfer during magnetic hyperthermia treatment. Int J Heat Mass Transf 52(5–6):1214–1222MATH Liu KC, Chen HT (2009) Analysis for the dual-phase-lag bio-heat transfer during magnetic hyperthermia treatment. Int J Heat Mass Transf 52(5–6):1214–1222MATH
Metadata
Title
A novel fully adaptive truly explicit time-marching methodology for the solution of hyperbolic bioheat conduction models
Authors
Lucas Ruffo Pinto
Delfim Soares Jr.
Webe João Mansur
Publication date
07-10-2022
Publisher
Springer London
Published in
Engineering with Computers / Issue 5/2022
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-022-01739-x

Other articles of this Issue 5/2022

Engineering with Computers 5/2022 Go to the issue