Skip to main content
Top

2025 | OriginalPaper | Chapter

A Novel Interdisciplinarity Model Towards Inter-domain Information Pairing

Authors : Nicolas Douard, Ahmed Samet, George Giakos, Denis Cavallucci

Published in: World Conference of AI-Powered Innovation and Inventive Design

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter introduces a groundbreaking interdisciplinarity model that combines the IDM methodology with Generative AI to systematically extract latent interdisciplinary insights from a comprehensive corpus of human knowledge. By addressing the limitations of traditional bibliometric approaches, the proposed method leverages full-text content and advanced semantic modeling to detect latent interdisciplinary connections. The study focuses on identifying interdisciplinary documents, even when metadata classifies them within a single domain, using a supervised machine learning classifier. The Text Convolutional Neural Network approach demonstrated superior performance, suggesting that about 25% of all human knowledge can be seen as interdisciplinary. This research lays the foundation for constructing comprehensive interdisciplinary knowledge maps and enabling systematic cross-domain transfer, driving innovation through biomimicry and interdisciplinary insights.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Douard, N., Samet, A., Giakos, G.C., Cavallucci, D.: Navigating the knowledge network: how inter-domain information pairing and generative AI can enable rapid problem-solving. In: TFC (2023) Douard, N., Samet, A., Giakos, G.C., Cavallucci, D.: Navigating the knowledge network: how inter-domain information pairing and generative AI can enable rapid problem-solving. In: TFC (2023)
2.
go back to reference Cavallucci, D.: From TRIZ to inventive design method (IDM): towards a formalization of inventive practices in R &D departments (2012) Cavallucci, D.: From TRIZ to inventive design method (IDM): towards a formalization of inventive practices in R &D departments (2012)
4.
go back to reference Lo, K., Wang, L.L., Neumann, M., Kinney, R.M., Weld, D.S.: S2ORC: the semantic scholar open research corpus. In: Annual Meeting of the Association for Computational Linguistics (2020) Lo, K., Wang, L.L., Neumann, M., Kinney, R.M., Weld, D.S.: S2ORC: the semantic scholar open research corpus. In: Annual Meeting of the Association for Computational Linguistics (2020)
5.
go back to reference Wagner, C.S., et al.: Approaches to understanding and measuring interdisciplinary scientific research (IDR): a review of the literature. J. Informetr. 5, 14–26 (2011)CrossRef Wagner, C.S., et al.: Approaches to understanding and measuring interdisciplinary scientific research (IDR): a review of the literature. J. Informetr. 5, 14–26 (2011)CrossRef
6.
go back to reference Altshuller, G.S., Shulyak, L.A.: And Suddenly the Inventor Appeared: TRIZ, the Theory of Inventive Problem Solving. Technical Innovation Center (1996) Altshuller, G.S., Shulyak, L.A.: And Suddenly the Inventor Appeared: TRIZ, the Theory of Inventive Problem Solving. Technical Innovation Center (1996)
7.
go back to reference Douard, N., Samet, A., Giakos, G.C., Cavallucci, D.: Bridging two different domains to pair their inherent problem-solution text contents: applications to quantum sensing and biology. In: TFC (2022) Douard, N., Samet, A., Giakos, G.C., Cavallucci, D.: Bridging two different domains to pair their inherent problem-solution text contents: applications to quantum sensing and biology. In: TFC (2022)
9.
go back to reference Zhou, Y., Li, J., Chi, J., Tang, W., Zheng, Y.: Set-CNN: a text convolutional neural network based on semantic extension for short text classification. Knowl.-Based Syst. 257, 109948 (2022)CrossRef Zhou, Y., Li, J., Chi, J., Tang, W., Zheng, Y.: Set-CNN: a text convolutional neural network based on semantic extension for short text classification. Knowl.-Based Syst. 257, 109948 (2022)CrossRef
10.
go back to reference Natekin, A., Knoll, A.: Gradient boosting machines, a tutorial. Front. Neurorobot. 7, 21 (2013)CrossRef Natekin, A., Knoll, A.: Gradient boosting machines, a tutorial. Front. Neurorobot. 7, 21 (2013)CrossRef
11.
go back to reference Mayr, A., Hofner, B., Schmid, M.: The importance of knowing when to stop. Methods Inf. Med. 51, 178–186 (2012)CrossRef Mayr, A., Hofner, B., Schmid, M.: The importance of knowing when to stop. Methods Inf. Med. 51, 178–186 (2012)CrossRef
12.
go back to reference Zou, H., Hastie, T.J.: Addendum: regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67, 768 (2005)MathSciNetCrossRef Zou, H., Hastie, T.J.: Addendum: regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67, 768 (2005)MathSciNetCrossRef
13.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2015) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2015)
14.
go back to reference Chicco, D., Jurman, G.: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21, 6 (2020)CrossRef Chicco, D., Jurman, G.: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21, 6 (2020)CrossRef
Metadata
Title
A Novel Interdisciplinarity Model Towards Inter-domain Information Pairing
Authors
Nicolas Douard
Ahmed Samet
George Giakos
Denis Cavallucci
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-75923-9_17

Premium Partner