Skip to main content
Top

2024 | OriginalPaper | Chapter

A Novel Logistic Regression-Based Fire Detection Model Using IoT in Underground Coal Mines

Authors : Chaitanya Thuppari, Srikanth Jannu, Damodar Reddy Edla

Published in: Proceedings of Third International Conference on Computing and Communication Networks

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The environment of underground coal mines (UCMs) is vulnerable to many environmental problems and consequential endangerment. Among those problems, mine fire is a liable threat that causes the loss of lives of mine workers and other valuable infrastructure and resources in the mines. Therefore, continuous monitoring is very important for early detection of mine fire in UCMs. Internet of Things (IoT), nowadays, is widely used for continuous monitoring of the environment of UCMs. For the purpose of monitoring, deploy sensor nodes in the region of UCMs to sense the local information of the environment and transfer that information to the sink for further process. As the gathered information is indistinct, it is necessary to consider the information for taking precautions. Therefore, we propose a method to predict the occurrences of mine fire in UCMs by using logistic regression model. Then, we applied active learning (AL) and semi-supervised learning (SSL) methods on the dataset sequentially to train the model by dividing the dataset into training and testing datasets. The training dataset is used to train a model. On the other hand, the testing dataset is used to evaluate the trained model. The overall process is implemented at the sink instead of control stations. In case of any hazardous situation, the sink takes immediate and necessary actions based on the sensed data rather than the control station. The trained model is simulated using WEKA tool for the data of continuous monitoring on different hazard conditions. This model is more reliable and works effectively when compared to offline monitoring system in any kind of hazards situations in UCMs. The simulated results show the accuracy of the proposed method as 98% whereas the accuracy of linear regression and naive Bayes has been shown as 93% and 96%, respectively, that shows our proposed method outperforms over the existing techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tripathy, D.P., Ala, C.K.: Identification of safety hazards in Indian underground coal mines. J. Sustain. Mining 17(4), 175–183 (2018)CrossRef Tripathy, D.P., Ala, C.K.: Identification of safety hazards in Indian underground coal mines. J. Sustain. Mining 17(4), 175–183 (2018)CrossRef
2.
go back to reference Wang, T., et al.: A spatio-temporal temperature-based thresholding algorithm for underground coal fire detection with satellite thermal infrared and radar remote sensing. Int. J. Appl. Earth Observat. Geoinf. 110, 102805 (2022)CrossRef Wang, T., et al.: A spatio-temporal temperature-based thresholding algorithm for underground coal fire detection with satellite thermal infrared and radar remote sensing. Int. J. Appl. Earth Observat. Geoinf. 110, 102805 (2022)CrossRef
3.
go back to reference Wang, T., et al.: Research progress and visualization of underground coal fire detection methods. Environ. Sci. Pollut. Res. 1–20 (2023) Wang, T., et al.: Research progress and visualization of underground coal fire detection methods. Environ. Sci. Pollut. Res. 1–20 (2023)
4.
go back to reference Basu, S., Pramanik, S., Dey, S., Panigrahi, G., Jana, D.K.: Fire monitoring in coal mines using wireless underground sensor network and interval type-2 fuzzy logic controller. Int. J. Coal Sci. Technol. 6, 274–285 (2019)CrossRef Basu, S., Pramanik, S., Dey, S., Panigrahi, G., Jana, D.K.: Fire monitoring in coal mines using wireless underground sensor network and interval type-2 fuzzy logic controller. Int. J. Coal Sci. Technol. 6, 274–285 (2019)CrossRef
5.
go back to reference Patel, A.K., Chatterjee, S., Gorai, A.K.: Effect on the performance of a support vector machine based machine vision system with dry and wet ore sample images in classification and grade prediction. Pattern Recognit Image Anal. 29, 309–324 (2019)CrossRef Patel, A.K., Chatterjee, S., Gorai, A.K.: Effect on the performance of a support vector machine based machine vision system with dry and wet ore sample images in classification and grade prediction. Pattern Recognit Image Anal. 29, 309–324 (2019)CrossRef
6.
go back to reference Muduli, L., Mishra, D.P., Jana, P.K.: Wireless sensor network based underground coal mine environmental monitoring using machine learning approach. In: Proceedings of the 11th International Mine Ventilation Congress, pp. 776–786. Springer Singapore (2019) Muduli, L., Mishra, D.P., Jana, P.K.: Wireless sensor network based underground coal mine environmental monitoring using machine learning approach. In: Proceedings of the 11th International Mine Ventilation Congress, pp. 776–786. Springer Singapore (2019)
7.
go back to reference Wojtecki, Ł, Iwaszenko, S., Apel, D.P., Bukowska, M., Makowka, J.: Use of machine learning algorithms to assess the state of rockburst hazard in underground coal mine openings. J. Rock Mech. Geotech. Engin. 14(3), 703–713 (2022)CrossRef Wojtecki, Ł, Iwaszenko, S., Apel, D.P., Bukowska, M., Makowka, J.: Use of machine learning algorithms to assess the state of rockburst hazard in underground coal mine openings. J. Rock Mech. Geotech. Engin. 14(3), 703–713 (2022)CrossRef
8.
go back to reference Kumari, K., et al.: UMAP and LSTM based fire status and explosibility prediction for sealed-off area in underground coal mine. Process Saf. Environ. Prot. 146, 837–852 (2021)CrossRef Kumari, K., et al.: UMAP and LSTM based fire status and explosibility prediction for sealed-off area in underground coal mine. Process Saf. Environ. Prot. 146, 837–852 (2021)CrossRef
9.
go back to reference Chai, H., Liang, Y., Wang, S., Shen, H.W.: A novel logistic regression model combining semi-supervised learning and active learning for disease classification. Sci. Rep. 8(1), 13009 (2018)CrossRef Chai, H., Liang, Y., Wang, S., Shen, H.W.: A novel logistic regression model combining semi-supervised learning and active learning for disease classification. Sci. Rep. 8(1), 13009 (2018)CrossRef
Metadata
Title
A Novel Logistic Regression-Based Fire Detection Model Using IoT in Underground Coal Mines
Authors
Chaitanya Thuppari
Srikanth Jannu
Damodar Reddy Edla
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_11