Skip to main content
Top
Published in:

20-06-2024

A Novel Method for Mental Stress Assessment Based on Heart Rate Variability Analysis of Electrocardiogram Signals

Authors: Sanjeev Kumar Saini, Rashmi Gupta

Published in: Wireless Personal Communications | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mental stress and associated heart disorders are some of the considerable causes of death in India and globally, as reported by the World Health Organization (WHO). The long-term presence of mental stress and hypertension in lifestyle can lead to significant disorders, including cardiac arrhythmias. Some researchers in the past have proposed methods to assess mental health by considering various physiological signals and artificial intelligence methods. Most studies have used complex algorithms and a combination of features extracted from bio-signals such as electroencephalogram (EEG), electrocardiogram (ECG), etc. This work aims to develop a simple and efficient method to classify mental stress from Heart Rate Variability (HRV) features of ECG signal. The proposed method for stress assessment is implemented using 1-min segments of real-time ECG signals from the Stress Recognition in Automobile Drivers (SRAD) database. We derived the HRV signal from the de-noised ECG signal and extracted time-domain statistical features. Correlation analysis is applied to statistical HRV features to establish the relationship among different metrics of HRV. The main contribution is to develop a Multiple Linear Regression (MLR) model to predict Heart Rate (HR) using statistically correlated HRV features. Another contribution is the design of a multinomial logistic classifier to classify the mental stress level into three classes: low, medium, and high stress. Simulation results demonstrate that time-domain HRV features are statistically correlated, and with a suitable choice of parameters, the proposed method can achieve a classification accuracy of 90.32%. The findings suggest that using fewer relevant features of ECG, the proposed method provides improved classification performance comparable to the state-of-the-art methods. Because of the non-invasive and simple approach, the proposed technique is suitable for accurately assessing mental stress in real-time environments. The presented approach strongly promotes the development of remote and automatic methods of mental stress assessment for real-world applications using wearable sensors and the Internet of Things.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mohino-Herranz, I., Gil-Pita, R., Ferreira, J., Rosa-Zurera, M., & Seoane, F. (2015). Assessment of mental, emotional and physical stress through analysis of physiological signals using smartphones. Sensors (Switzerland), 15(10), 25607–25627. https://doi.org/10.3390/s151025607CrossRef Mohino-Herranz, I., Gil-Pita, R., Ferreira, J., Rosa-Zurera, M., & Seoane, F. (2015). Assessment of mental, emotional and physical stress through analysis of physiological signals using smartphones. Sensors (Switzerland), 15(10), 25607–25627. https://​doi.​org/​10.​3390/​s151025607CrossRef
2.
go back to reference Betti, S., Lova, R. M., Rovini, E., Acerbi, G., Santarelli, L., Cabiati, M., & Cavallo, F. (2018). Evaluation of an integrated system of wearable physiological sensors for stress monitoring in working environments by using biological markers. IEEE Transactions on Biomedical Engineering, 65(8), 1748–1758. https://doi.org/10.1109/TBME.2017.2764507CrossRef Betti, S., Lova, R. M., Rovini, E., Acerbi, G., Santarelli, L., Cabiati, M., & Cavallo, F. (2018). Evaluation of an integrated system of wearable physiological sensors for stress monitoring in working environments by using biological markers. IEEE Transactions on Biomedical Engineering, 65(8), 1748–1758. https://​doi.​org/​10.​1109/​TBME.​2017.​2764507CrossRef
13.
go back to reference Zieler, M. G. (2004). Physiological stress and autonomic nervous system (pp. 189–190). Academic Press. Zieler, M. G. (2004). Physiological stress and autonomic nervous system (pp. 189–190). Academic Press.
14.
go back to reference Park, D., Lee, M., Park, S. E., Seong, J. K., & Youn, I. (2018). Determination of optimal heart rate variability features based on SVM-recursive feature elimination for cumulative stress monitoring using ECG sensor. Sensors (Switzerland). https://doi.org/10.3390/s18072387CrossRef Park, D., Lee, M., Park, S. E., Seong, J. K., & Youn, I. (2018). Determination of optimal heart rate variability features based on SVM-recursive feature elimination for cumulative stress monitoring using ECG sensor. Sensors (Switzerland). https://​doi.​org/​10.​3390/​s18072387CrossRef
15.
go back to reference Iqbal, T., Elahi, A., Wijns, W., & Amin, B. (2023). Improved stress classification using automatic feature selection from heart rate and respiratory rate time signals. Applied Sciences, 13, 2950.CrossRef Iqbal, T., Elahi, A., Wijns, W., & Amin, B. (2023). Improved stress classification using automatic feature selection from heart rate and respiratory rate time signals. Applied Sciences, 13, 2950.CrossRef
21.
go back to reference Masala, K. M., & Dalmeida, G. L. (2021). HRV features as viable physiological markers for stress detection using wearable devices. Sensors, 21(8), 2873.CrossRef Masala, K. M., & Dalmeida, G. L. (2021). HRV features as viable physiological markers for stress detection using wearable devices. Sensors, 21(8), 2873.CrossRef
30.
go back to reference Huysmans, D., Smets, E., De Raedt, W., Van Hoof, C., Bogaerts, K., Van Diest, I., & Helic, D. (2018). Unsupervised learning for mental stress detection exploration of self-organizing maps. In BIOSIGNALS 2018—11th International conference on bio-inspired systems and signal processing, proceedings; part of 11th international joint conference on biomedical engineering systems and technologies, BIOSTEC 2018 (vol. 4, pp. 26–35). https://doi.org/10.5220/0006541100260035 Huysmans, D., Smets, E., De Raedt, W., Van Hoof, C., Bogaerts, K., Van Diest, I., & Helic, D. (2018). Unsupervised learning for mental stress detection exploration of self-organizing maps. In BIOSIGNALS 2018—11th International conference on bio-inspired systems and signal processing, proceedings; part of 11th international joint conference on biomedical engineering systems and technologies, BIOSTEC 2018 (vol. 4, pp. 26–35). https://​doi.​org/​10.​5220/​0006541100260035​
31.
go back to reference Zuccalà, V. C., & Favilla, R. (2021). Recognition of stress activation by unobtrusive multi sensing setup. Applied Sciences, 11(14), 6381.CrossRef Zuccalà, V. C., & Favilla, R. (2021). Recognition of stress activation by unobtrusive multi sensing setup. Applied Sciences, 11(14), 6381.CrossRef
35.
go back to reference Hwang, B., Ryu, J. W., Park, C., & Zhang, B. T. (2017). A novel method to monitor human stress states using ultra-short-term ECG spectral feature. In Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS (vol. 12, pp. 2381–2384). https://doi.org/10.1109/EMBC.2017.8037335 Hwang, B., Ryu, J. W., Park, C., & Zhang, B. T. (2017). A novel method to monitor human stress states using ultra-short-term ECG spectral feature. In Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS (vol. 12, pp. 2381–2384). https://​doi.​org/​10.​1109/​EMBC.​2017.​8037335
40.
go back to reference Saini, S. K., & Gupta, R. (2019). A review on ECG signal analysis for mental stress assessment. In Proceedings of the 2019 6th international conference on computing for sustainable global development, INDIACom 2019 (pp. 915–918). Saini, S. K., & Gupta, R. (2019). A review on ECG signal analysis for mental stress assessment. In Proceedings of the 2019 6th international conference on computing for sustainable global development, INDIACom 2019 (pp. 915–918).
41.
go back to reference Carroll, R. G. (2007). The Heart. In Elsevier’s integrated physiology (pp. 65–75). Elsevier. Carroll, R. G. (2007). The Heart. In Elsevier’s integrated physiology (pp. 65–75). Elsevier.
58.
go back to reference Healey, J. A., Picard, R. W., Smith, A. C., & Healey, J. A. (2000). Wearable and Automotive Systems for Affect Recognition from Physiology. Healey, J. A., Picard, R. W., Smith, A. C., & Healey, J. A. (2000). Wearable and Automotive Systems for Affect Recognition from Physiology.
Metadata
Title
A Novel Method for Mental Stress Assessment Based on Heart Rate Variability Analysis of Electrocardiogram Signals
Authors
Sanjeev Kumar Saini
Rashmi Gupta
Publication date
20-06-2024
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2024
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-024-11317-7