Skip to main content
Top
Published in:

23-08-2024 | Short Paper

A Novel Moving Horizon Estimation-Based Robust Kalman Filter with Heavy-Tailed Noises

Authors: Yue Hu, Wei Dong Zhou

Published in: Circuits, Systems, and Signal Processing | Issue 12/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The degree of freedom (DOF) parameter plays a crucial role in the Student’s t distribution as it affects the thickness of the distribution tails. Therefore, choosing an appropriate DOF parameter is essential for accurately modeling heavy-tailed noise. To improve estimation accuracy, this paper introduces a new robust Kalman filter based on moving window estimation to handle heavy-tailed noise. First, a sliding window based on Moving Horizon Estimation (MHE) is designed. By continuously utilizing the latest measurement information through the silding window, outliers that cause heavy-tailed noise can be better identified. Second, the noise is modeled as a Student’s t distribution, and an appropriate conjugate prior distribution is selected for the unknown noise covariance matrix. The Variational Bayesian (VB) method is combined with the proposed MHE framework to jointly infer the unknown parameters, updating the DOF parameter to a Gamma distribution. Finally, through simulation experiments, the optimal number of iterations and MHE window length are determined to ensure estimation accuracy while reducing computational complexity. The simulation results show that the proposed filtering algorithm exhibits better robustness in handling heavy-tailed noise compared to traditional filters.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Show more products
Literature
1.
go back to reference G. Agamennoni, J.I. Nieto, E.M. Nebot, Approximate inference in state-space models with heavy-tailed noise. IEEE Trans. Signal Process. 60(10), 5024–5037 (2012)MathSciNetCrossRef G. Agamennoni, J.I. Nieto, E.M. Nebot, Approximate inference in state-space models with heavy-tailed noise. IEEE Trans. Signal Process. 60(10), 5024–5037 (2012)MathSciNetCrossRef
2.
go back to reference F. Albu, L.T. Tran, S. Nordholm, The hybrid simplified kalman filter for adaptive feedback cancellation. In 2018 International Conference on Communications (COMM), pp. 45–50 (2018). IEEE F. Albu, L.T. Tran, S. Nordholm, The hybrid simplified kalman filter for adaptive feedback cancellation. In 2018 International Conference on Communications (COMM), pp. 45–50 (2018). IEEE
3.
go back to reference I. Arasaratnam, S. Haykin, R.J. Elliott, Discrete-time nonlinear filtering algorithms using gauss-hermite quadrature. Proceedings of the IEEE 95(5), 953–977 (2007)CrossRef I. Arasaratnam, S. Haykin, R.J. Elliott, Discrete-time nonlinear filtering algorithms using gauss-hermite quadrature. Proceedings of the IEEE 95(5), 953–977 (2007)CrossRef
4.
go back to reference I. Bilik, J. Tabrikian, Maneuvering target tracking in the presence of glint using the nonlinear gaussian mixture kalman filter. IEEE Trans. Aerosp. Electr. Syst. 46(1), 246–262 (2010)CrossRef I. Bilik, J. Tabrikian, Maneuvering target tracking in the presence of glint using the nonlinear gaussian mixture kalman filter. IEEE Trans. Aerosp. Electr. Syst. 46(1), 246–262 (2010)CrossRef
5.
go back to reference C.M. Biship, Pattern recognition and machine learning (information science and statistics). Springer (2007) C.M. Biship, Pattern recognition and machine learning (information science and statistics). Springer (2007)
6.
go back to reference B. Chen, J. Wang, H. Zhao, N. Zheng, J.C. Principe, Convergence of a fixedpoint algorithm under maximum correntropy criterion. IEEE Signal Process. Lett. 22(10), 1723–1727 (2015)CrossRef B. Chen, J. Wang, H. Zhao, N. Zheng, J.C. Principe, Convergence of a fixedpoint algorithm under maximum correntropy criterion. IEEE Signal Process. Lett. 22(10), 1723–1727 (2015)CrossRef
8.
go back to reference G.T. Cinar, J.C. Principe, Hidden state estimation using the correntropy filter with fixed point update and adaptive kernel size. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–6 (2012). IEEE G.T. Cinar, J.C. Principe, Hidden state estimation using the correntropy filter with fixed point update and adaptive kernel size. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–6 (2012). IEEE
9.
go back to reference G. Durgaprasad, S. Thakur, Robust dynamic state estimation of power systems based on m-estimation and realistic modeling of system dynamics. IEEE Trans. Power Syst. 13(4), 1331–1336 (1998)CrossRef G. Durgaprasad, S. Thakur, Robust dynamic state estimation of power systems based on m-estimation and realistic modeling of system dynamics. IEEE Trans. Power Syst. 13(4), 1331–1336 (1998)CrossRef
10.
go back to reference X. Fan, G. Wang, J. Han, Y. Wang, Interacting multiple model based on maximum correntropy kalman filter. IEEE Transactions on Circuits and Systems, II. Express briefs (68–8) (2021) X. Fan, G. Wang, J. Han, Y. Wang, Interacting multiple model based on maximum correntropy kalman filter. IEEE Transactions on Circuits and Systems, II. Express briefs (68–8) (2021)
11.
go back to reference P. Fieguth, Information science and statistics. Physica-Verlag HD (1986) P. Fieguth, Information science and statistics. Physica-Verlag HD (1986)
12.
go back to reference H. Fu, Y. Cheng, A novel robust kalman filter based on switching gaussian heavy-tailed distribution. IEEE Trans. Circuit Syst. II: Express Briefs 69(6), 3012–3016 (2022) H. Fu, Y. Cheng, A novel robust kalman filter based on switching gaussian heavy-tailed distribution. IEEE Trans. Circuit Syst. II: Express Briefs 69(6), 3012–3016 (2022)
13.
go back to reference H. Fu, Y. Cheng, A novel switching gaussian-heavy-tailed distribution based robust fixed-interval smoother. Signal Process. 195, 108492 (2022)CrossRef H. Fu, Y. Cheng, A novel switching gaussian-heavy-tailed distribution based robust fixed-interval smoother. Signal Process. 195, 108492 (2022)CrossRef
14.
go back to reference Y. Huang, M. Bai, Y. Zhang, A novel multiple-outlier-robust kalman filter. Front. Inform. Technol. Electr. Eng. 23(3), 422–437 (2022)CrossRef Y. Huang, M. Bai, Y. Zhang, A novel multiple-outlier-robust kalman filter. Front. Inform. Technol. Electr. Eng. 23(3), 422–437 (2022)CrossRef
15.
go back to reference Y. Huang, Y. Zhang, N. Li, Z. Wu, J.A. Chambers, A novel robust student’s t-based kalman filter. IEEE Trans. Aerosp. Electr. Syst. 53(3), 1545–1554 (2017)CrossRef Y. Huang, Y. Zhang, N. Li, Z. Wu, J.A. Chambers, A novel robust student’s t-based kalman filter. IEEE Trans. Aerosp. Electr. Syst. 53(3), 1545–1554 (2017)CrossRef
16.
go back to reference Y. Huang, Y. Zhang, N. Li, J.A. Chambers, A robust gaussian approximate filter for nonlinear systems with heavy tailed measurement noises. In: IEEE International Conference on Acoustics (2016) Y. Huang, Y. Zhang, N. Li, J.A. Chambers, A robust gaussian approximate filter for nonlinear systems with heavy tailed measurement noises. In: IEEE International Conference on Acoustics (2016)
17.
go back to reference Y. Huang, Y. Zhang, N. Li, J.A. Chambers, A robust gaussian approximate fixed-interval smoother for nonlinear systems with heavy-tailed process and measurement noises. IEEE Signal Process. Lett. 23(4), 468–472 (2016)CrossRef Y. Huang, Y. Zhang, N. Li, J.A. Chambers, A robust gaussian approximate fixed-interval smoother for nonlinear systems with heavy-tailed process and measurement noises. IEEE Signal Process. Lett. 23(4), 468–472 (2016)CrossRef
18.
go back to reference Y. Huang, Y. Zhang, Y. Zhao, P. Shi, J.A. Chambers, A novel outlierrobust kalman filtering framework based on statistical similarity measure. IEEE Trans. Autom. Control 66(6), 2677–2692 (2020)CrossRef Y. Huang, Y. Zhang, Y. Zhao, P. Shi, J.A. Chambers, A novel outlierrobust kalman filtering framework based on statistical similarity measure. IEEE Trans. Autom. Control 66(6), 2677–2692 (2020)CrossRef
19.
go back to reference Y. Huang, F. Zhu, G. Jia, Y. Zhang, A slide window variational adaptive kalman filter. IEEE Trans. Circuit Syst. II: Express Briefs 67(12), 3552–3556 (2020) Y. Huang, F. Zhu, G. Jia, Y. Zhang, A slide window variational adaptive kalman filter. IEEE Trans. Circuit Syst. II: Express Briefs 67(12), 3552–3556 (2020)
20.
go back to reference R. Izanloo, S.A. Fakoorian, H.S. Yazdi, D. Simon, Kalman filtering based on the maximum correntropy criterion in the presence of non–gaussian noise. In: 2016 Annual Conference on Information Science and Systems (CISS), pp. 500–505 (2016). IEEE R. Izanloo, S.A. Fakoorian, H.S. Yazdi, D. Simon, Kalman filtering based on the maximum correntropy criterion in the presence of non–gaussian noise. In: 2016 Annual Conference on Information Science and Systems (CISS), pp. 500–505 (2016). IEEE
21.
go back to reference C.D. Karlgaard, Robust rendezvous navigation in elliptical orbit. J. Guidance, Control, Dynamics 29(2), 495–499 (2006)CrossRef C.D. Karlgaard, Robust rendezvous navigation in elliptical orbit. J. Guidance, Control, Dynamics 29(2), 495–499 (2006)CrossRef
22.
go back to reference J. Kokkala, A. Solin, S. Sarkka, Expectation maximization based parameter estimation by sigma–point and particle smoothing. In: 17th International Conference on Information Fusion (FUSION), pp. 1–8 (2014). IEEE J. Kokkala, A. Solin, S. Sarkka, Expectation maximization based parameter estimation by sigma–point and particle smoothing. In: 17th International Conference on Information Fusion (FUSION), pp. 1–8 (2014). IEEE
23.
go back to reference Y. Li, Y. Wang, R. Yang, F. Albu, A soft parameter function penalized normalized maximum correntropy criterion algorithm for sparse system identification. Entropy 19(1), 45 (2017)MathSciNetCrossRef Y. Li, Y. Wang, R. Yang, F. Albu, A soft parameter function penalized normalized maximum correntropy criterion algorithm for sparse system identification. Entropy 19(1), 45 (2017)MathSciNetCrossRef
24.
go back to reference Q. Liu, Z. Wang, Moving-horizon estimation for linear dynamic networks with binary encoding schemes. IEEE Trans. Autom. Control 66(4), 1763–1770 (2020)MathSciNetCrossRef Q. Liu, Z. Wang, Moving-horizon estimation for linear dynamic networks with binary encoding schemes. IEEE Trans. Autom. Control 66(4), 1763–1770 (2020)MathSciNetCrossRef
25.
go back to reference H. Nurminen, T. Ardeshiri, R. Piche, F. Gustafsson, Robust inference for statespace models with skewed measurement noise. IEEE Signal Process. Lett. 22(11), 1898–1902 (2015)CrossRef H. Nurminen, T. Ardeshiri, R. Piche, F. Gustafsson, Robust inference for statespace models with skewed measurement noise. IEEE Signal Process. Lett. 22(11), 1898–1902 (2015)CrossRef
26.
go back to reference A. Pensia, V. Jog, P.L. Loh, Robust regression with covariate filtering: Heavy tails and adversarial contamination (2020) A. Pensia, V. Jog, P.L. Loh, Robust regression with covariate filtering: Heavy tails and adversarial contamination (2020)
27.
go back to reference M. Roth, Kalman filters for nonlinear systems and heavy-tailed noise. PhD thesis, Linkoping University Electronic Press (2013) M. Roth, Kalman filters for nonlinear systems and heavy-tailed noise. PhD thesis, Linkoping University Electronic Press (2013)
28.
go back to reference M. Roth, E. Ozkan, F. Gustafsson, A student’s t filter for heavy tailed process and measurement noise. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 5770–5774 (2013). IEEE M. Roth, E. Ozkan, F. Gustafsson, A student’s t filter for heavy tailed process and measurement noise. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 5770–5774 (2013). IEEE
29.
go back to reference M.L. Tyler, M. Morari, Stability of constrained moving horizon estimation schemes. Automatica 17, 1410–1425 (1996) M.L. Tyler, M. Morari, Stability of constrained moving horizon estimation schemes. Automatica 17, 1410–1425 (1996)
30.
go back to reference W. Wang, C.K. Tse, S. Wang, Dynamic state estimation of power systems by p–norm nonlinear kalman filter. In: IEEE International NEWCAS Conference (2020) W. Wang, C.K. Tse, S. Wang, Dynamic state estimation of power systems by p–norm nonlinear kalman filter. In: IEEE International NEWCAS Conference (2020)
31.
go back to reference Y. Wang, Y. Li, F. Albu, R. Yang, Group-constrained maximum correntropy criterion algorithms for estimating sparse mix-noised channels. Entropy 19(8), 432 (2017)CrossRef Y. Wang, Y. Li, F. Albu, R. Yang, Group-constrained maximum correntropy criterion algorithms for estimating sparse mix-noised channels. Entropy 19(8), 432 (2017)CrossRef
32.
go back to reference W. Wenkang, F. Jingan, S. Bao, L. Xinxin, Huber-based robust unscented kalman filter distributed drive electric vehicle state observation. Energies 14(3), 750 (2021)CrossRef W. Wenkang, F. Jingan, S. Bao, L. Xinxin, Huber-based robust unscented kalman filter distributed drive electric vehicle state observation. Energies 14(3), 750 (2021)CrossRef
33.
go back to reference J. Zhao, L. Mili, A theoretical framework of robust h-infinity unscented kalman filter and its application to power system dynamic state estimation. IEEE Trans. Signal Process. 67(10), 2734–2746 (2019)MathSciNetCrossRef J. Zhao, L. Mili, A theoretical framework of robust h-infinity unscented kalman filter and its application to power system dynamic state estimation. IEEE Trans. Signal Process. 67(10), 2734–2746 (2019)MathSciNetCrossRef
34.
go back to reference F. Zhu, Y. Huang, C. Xue, L. Mihaylova, J. Chambers, A sliding window variational outlier-robust kalman filter based on student’s t-noise modeling. IEEE Trans. Aerosp. Electr. Syst. 58(5), 4835–4849 (2022)CrossRef F. Zhu, Y. Huang, C. Xue, L. Mihaylova, J. Chambers, A sliding window variational outlier-robust kalman filter based on student’s t-noise modeling. IEEE Trans. Aerosp. Electr. Syst. 58(5), 4835–4849 (2022)CrossRef
35.
go back to reference H. Zhu, H. Leung, Z. He, A variational bayesian approach to robust sensor fusion based on student-t distribution. Inform. Sci. 221, 201–214 (2013)CrossRef H. Zhu, H. Leung, Z. He, A variational bayesian approach to robust sensor fusion based on student-t distribution. Inform. Sci. 221, 201–214 (2013)CrossRef
36.
go back to reference H. Zhu, K. Zou, Y. Li, H. Leung, Robust sensor fusion with heavy-tailed noises. Signal Process. 175, 107659 (2020)CrossRef H. Zhu, K. Zou, Y. Li, H. Leung, Robust sensor fusion with heavy-tailed noises. Signal Process. 175, 107659 (2020)CrossRef
37.
go back to reference L. Zou, Z. Wang, J. Hu, Q.-L. Han, Moving horizon estimation meets multi-sensor information fusion: development, opportunities and challenges. Inform. Fusion 60, 1–10 (2020)CrossRef L. Zou, Z. Wang, J. Hu, Q.-L. Han, Moving horizon estimation meets multi-sensor information fusion: development, opportunities and challenges. Inform. Fusion 60, 1–10 (2020)CrossRef
Metadata
Title
A Novel Moving Horizon Estimation-Based Robust Kalman Filter with Heavy-Tailed Noises
Authors
Yue Hu
Wei Dong Zhou
Publication date
23-08-2024
Publisher
Springer US
Published in
Circuits, Systems, and Signal Processing / Issue 12/2024
Print ISSN: 0278-081X
Electronic ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02831-x