Skip to main content
Top
Published in: Journal of Materials Science 6/2017

28-11-2016 | Original Paper

A novel MWCNT/nanotubular TiO2(B) loaded with SnO2 nanocrystals ternary composite as anode material for lithium-ion batteries

Authors: Jiao Zheng, Daqian Ma, Xiangfeng Wu, Peng Dou, Zhenzhen Cao, Chao Wang, Xinhua Xu

Published in: Journal of Materials Science | Issue 6/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A novel MWCNT/long nanotubular TiO2(B) loaded with SnO2 nanocrystals (SnO2NC/TiO2(B)NT/MWCNT) ternary composite has been prepared by two-step hydrothermal method and used as the anode material for the first time. In this work, the mechanical stirring improved the diffusion and surface reaction rates of reactants and promoted the appearance of longer intermediate TiO2(B) nanosheets, leading to the formation of TiO2(B) nanotubes with a length of ~9 μm. Among the SnO2NC/TiO2(B)NT/MWCNT composite, the wrapping and mechanical supporting functions of TiO2(B) nanotubes can effectively avoid the pulverization and aggregation of SnO2 nanocrystals (SnO2NC) in lithium-ion charging and discharging process. Moreover, the synergistic effects of nanotubular TiO2(B) coating layer and three-dimensional interconnected network structure composed of TiO2(B) nanotubes and MWCNT were taken to mitigate volume expansion of SnO2NC and improve the transport of lithium ion and electron in the network. Tested as anode materials, the SnO2NC/TiO2(B)NT/MWCNT composite maintained 211 mAh g−1 at 3000 mA g−1 after three testing processes with alternative current density of 200 and 3000 mA g−1 and could rebound to 338 mAh g−1 at a current density of 200 mA g−1, indicating an effective way to optimize electrochemical properties of SnO2 as anode material.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRef Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRef
2.
go back to reference Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRef Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRef
3.
go back to reference Ui K, Kawamura S, Kumagai N (2012) Fabrication of binder-free SnO2 nanoparticle electrode for lithium secondary batteries by electrophoretic deposition method. Electrochim Acta 76:383–388CrossRef Ui K, Kawamura S, Kumagai N (2012) Fabrication of binder-free SnO2 nanoparticle electrode for lithium secondary batteries by electrophoretic deposition method. Electrochim Acta 76:383–388CrossRef
4.
go back to reference Jiang SH, Yue WB, Gao ZQ, Ren Y, Ma H, Zhao XH, Liu YL, Yang XJ (2013) Graphene-encapsulated mesoporous SnO2 composites as high performance anodes for lithium-ion batteries. J Mater Sci 48:3870–3876. doi:10.1007/s10853-013-7189-9 CrossRef Jiang SH, Yue WB, Gao ZQ, Ren Y, Ma H, Zhao XH, Liu YL, Yang XJ (2013) Graphene-encapsulated mesoporous SnO2 composites as high performance anodes for lithium-ion batteries. J Mater Sci 48:3870–3876. doi:10.​1007/​s10853-013-7189-9 CrossRef
5.
go back to reference Yin LX, Chai SM, Wang FF, Huang JF, Li JY, Liu CQ, Kong XG (2016) Ultrafine SnO2 nanoparticles as a high performance anode material for lithium ion battery. Ceram Int 42:9433–9437CrossRef Yin LX, Chai SM, Wang FF, Huang JF, Li JY, Liu CQ, Kong XG (2016) Ultrafine SnO2 nanoparticles as a high performance anode material for lithium ion battery. Ceram Int 42:9433–9437CrossRef
6.
go back to reference Hu RZ, Zhang HY, Liu JW, Chen DC, Yang LC, Zhu M, Liu ML (2015) Deformable fibrous carbon supported ultrafine nano-SnO2 as a high volumetric capacity and cyclic durable anode for Li storage. J Mater Chem A 3:15097–15107CrossRef Hu RZ, Zhang HY, Liu JW, Chen DC, Yang LC, Zhu M, Liu ML (2015) Deformable fibrous carbon supported ultrafine nano-SnO2 as a high volumetric capacity and cyclic durable anode for Li storage. J Mater Chem A 3:15097–15107CrossRef
7.
go back to reference Aparnev AI, Afonina LI, Loginov AV, Uvarov NF (2016) Synthesis of nanocomposite materials based on cobalt-doped tin oxide and study of their physicochemical properties. Russ J Appl Chem 89:212–215CrossRef Aparnev AI, Afonina LI, Loginov AV, Uvarov NF (2016) Synthesis of nanocomposite materials based on cobalt-doped tin oxide and study of their physicochemical properties. Russ J Appl Chem 89:212–215CrossRef
8.
go back to reference Bhaskar A, Deepa M, Rao TN (2014) Size-controlled SnO2 hollow spheres via a template free approach as anodes for lithium ion batteries. Nanoscale 6:10762–10771CrossRef Bhaskar A, Deepa M, Rao TN (2014) Size-controlled SnO2 hollow spheres via a template free approach as anodes for lithium ion batteries. Nanoscale 6:10762–10771CrossRef
9.
go back to reference Cao ZZ, Yang HY, Dou P, Wang C, Zheng J, Xu XH (2016) Synthesis of three-dimensional hollow SnO2@ PPy nanotube arrays via template-assisted method and chemical vapor-phase polymerization as high performance anodes for lithium-ion batteries. Electrochim Acta 209:700–708CrossRef Cao ZZ, Yang HY, Dou P, Wang C, Zheng J, Xu XH (2016) Synthesis of three-dimensional hollow SnO2@ PPy nanotube arrays via template-assisted method and chemical vapor-phase polymerization as high performance anodes for lithium-ion batteries. Electrochim Acta 209:700–708CrossRef
10.
go back to reference Yang S, Yue WB, Zhu J, Ren Y, Yang XJ (2013) Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries. Adv Funct Mater 23:3570–3576CrossRef Yang S, Yue WB, Zhu J, Ren Y, Yang XJ (2013) Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries. Adv Funct Mater 23:3570–3576CrossRef
11.
go back to reference Song HW, Li N, Cui H, Wang CX (2014) Monodisperse SnO2 nanocrystals functionalized multiwalled carbon nanotubes for large rate and long lifespan anode materials in lithium ion batteries. Electrochim Acta 120:46–51CrossRef Song HW, Li N, Cui H, Wang CX (2014) Monodisperse SnO2 nanocrystals functionalized multiwalled carbon nanotubes for large rate and long lifespan anode materials in lithium ion batteries. Electrochim Acta 120:46–51CrossRef
12.
go back to reference Nam S, Yang SJ, Lee SS, Kim J, Kang J, Oh JY, Park CR, Moon T, Lee KT, Park B (2015) Wrapping SnO2 with porosity-tuned graphene as a strategy for high-rate performance in lithium battery anodes. Carbon 85:289–298CrossRef Nam S, Yang SJ, Lee SS, Kim J, Kang J, Oh JY, Park CR, Moon T, Lee KT, Park B (2015) Wrapping SnO2 with porosity-tuned graphene as a strategy for high-rate performance in lithium battery anodes. Carbon 85:289–298CrossRef
13.
go back to reference Tian QH, Tian Y, Zhang ZX, Yang L, Hirano S (2015) Facile one-pot hydrothermal with subsequent carbonization preparation of hollow tin dioxide@carbon nanostructures as high-performance anode for lithium-ion batteries. J Power Sources 280:397–405CrossRef Tian QH, Tian Y, Zhang ZX, Yang L, Hirano S (2015) Facile one-pot hydrothermal with subsequent carbonization preparation of hollow tin dioxide@carbon nanostructures as high-performance anode for lithium-ion batteries. J Power Sources 280:397–405CrossRef
14.
go back to reference Guo YG, Hu JS, Wan L (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887CrossRef Guo YG, Hu JS, Wan L (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887CrossRef
15.
go back to reference Ma JM, Zhang J, Wang SR, Wang QH, Jiao LF, Yang JQ, Duan XC, Liu ZF, Lian JB, Zheng WJ (2011) Superior gas-sensing and lithium-storage performance SnO2 nanocrystals synthesized by hydrothermal method. CrystEngComm 13:6077–6081CrossRef Ma JM, Zhang J, Wang SR, Wang QH, Jiao LF, Yang JQ, Duan XC, Liu ZF, Lian JB, Zheng WJ (2011) Superior gas-sensing and lithium-storage performance SnO2 nanocrystals synthesized by hydrothermal method. CrystEngComm 13:6077–6081CrossRef
16.
go back to reference Zhang PG, Zhang CY, Xie AJ, Li C, Song JM, Shen YH (2016) Novel template-free synthesis of hollow@porous TiO2 superior anode materials for lithium ion battery. J Mater Sci 51:3448–3453. doi:10.1007/s10853-015-9662-0 CrossRef Zhang PG, Zhang CY, Xie AJ, Li C, Song JM, Shen YH (2016) Novel template-free synthesis of hollow@porous TiO2 superior anode materials for lithium ion battery. J Mater Sci 51:3448–3453. doi:10.​1007/​s10853-015-9662-0 CrossRef
17.
go back to reference Tian QH, Zhang ZX, Yang L, Hirano S (2014) Encapsulation of SnO2 nanoparticles into hollow TiO2 nanowires as high performance anode materials for lithium ion batteries. J Power Sources 253:9–16CrossRef Tian QH, Zhang ZX, Yang L, Hirano S (2014) Encapsulation of SnO2 nanoparticles into hollow TiO2 nanowires as high performance anode materials for lithium ion batteries. J Power Sources 253:9–16CrossRef
18.
go back to reference Yan X, Li YJ, Li ML, Jin YC, Du F, Chen G, Wei YJ (2015) Ultrafast lithium storage in TiO2–bronze nanowires/N-doped graphene nanocomposites. J Mater Chem A 3:4180–4187CrossRef Yan X, Li YJ, Li ML, Jin YC, Du F, Chen G, Wei YJ (2015) Ultrafast lithium storage in TiO2–bronze nanowires/N-doped graphene nanocomposites. J Mater Chem A 3:4180–4187CrossRef
19.
go back to reference Wang JF, Xie JJ, Jiang YM, Zhang JJ, Wang YG, Zhou ZF (2015) Preparation of mesoporous TiO2-B nanowires from titanium glycolate and their application as an anode material for lithium ion batteries. J Mater Sci 50:6321–6328. doi:10.1007/s10853-015-9172-0 CrossRef Wang JF, Xie JJ, Jiang YM, Zhang JJ, Wang YG, Zhou ZF (2015) Preparation of mesoporous TiO2-B nanowires from titanium glycolate and their application as an anode material for lithium ion batteries. J Mater Sci 50:6321–6328. doi:10.​1007/​s10853-015-9172-0 CrossRef
20.
go back to reference Byeon A, Boota M, Beidaghi M, Aken KV, Lee JW, Gogotsi Y (2015) Effect of hydrogenation on performance of TiO2(B) nanowire for lithium ion capacitors. Electrochem Commun 60:199–203CrossRef Byeon A, Boota M, Beidaghi M, Aken KV, Lee JW, Gogotsi Y (2015) Effect of hydrogenation on performance of TiO2(B) nanowire for lithium ion capacitors. Electrochem Commun 60:199–203CrossRef
21.
go back to reference Dylla AG, Henkelman G, Stevenson KJ (2013) Lithium insertion in nanostructured TiO2(B) architectures. Acc Chem Res 46:1104–1112CrossRef Dylla AG, Henkelman G, Stevenson KJ (2013) Lithium insertion in nanostructured TiO2(B) architectures. Acc Chem Res 46:1104–1112CrossRef
22.
go back to reference Takami N, Harada Y, Wasaki T, Hoshina K, Yoshida Y (2015) Micro-size spherical TiO2(B) secondary particles as anode materials for high-power and long-life lithium-ion batteries. J Power Sources 273:923–930CrossRef Takami N, Harada Y, Wasaki T, Hoshina K, Yoshida Y (2015) Micro-size spherical TiO2(B) secondary particles as anode materials for high-power and long-life lithium-ion batteries. J Power Sources 273:923–930CrossRef
23.
go back to reference Madian M, Klose M, Jaumann T, Gebert A, Oswald S, Ismail N, Eychmuller A, Eckert J, Giebelerad L (2016) Anodically fabricated TiO2–SnO2 nanotubes and their application in lithium ion batteries. J Mater Chem A 4:5542–5552CrossRef Madian M, Klose M, Jaumann T, Gebert A, Oswald S, Ismail N, Eychmuller A, Eckert J, Giebelerad L (2016) Anodically fabricated TiO2–SnO2 nanotubes and their application in lithium ion batteries. J Mater Chem A 4:5542–5552CrossRef
24.
go back to reference Wu HY, Hon MH, Kuan CY, Leu IC (2015) Synthesis of TiO2(B)/SnO2 composite materials as an anode for lithium-ion batteries. Ceram Int 41:9527–9533CrossRef Wu HY, Hon MH, Kuan CY, Leu IC (2015) Synthesis of TiO2(B)/SnO2 composite materials as an anode for lithium-ion batteries. Ceram Int 41:9527–9533CrossRef
25.
go back to reference Zhang DA, Wang Q, Wang Q, Sun J, Xing LL, Xue XY (2014) Core–shell SnO2@TiO2–B nanowires as the anode of lithium ion battery with high capacity and rate capability. Mater Lett 128:295–298CrossRef Zhang DA, Wang Q, Wang Q, Sun J, Xing LL, Xue XY (2014) Core–shell SnO2@TiO2–B nanowires as the anode of lithium ion battery with high capacity and rate capability. Mater Lett 128:295–298CrossRef
26.
go back to reference Yang ZX, Du GD, Guo ZP, Yu XB, Chen ZX, Guo TL, Zeng R (2011) Encapsulation of TiO2(B) nanowire cores into SnO2/carbon nanoparticle shells and their high performance in lithium storage. Nanoscale 3:4440–4447CrossRef Yang ZX, Du GD, Guo ZP, Yu XB, Chen ZX, Guo TL, Zeng R (2011) Encapsulation of TiO2(B) nanowire cores into SnO2/carbon nanoparticle shells and their high performance in lithium storage. Nanoscale 3:4440–4447CrossRef
27.
go back to reference Ji G, Ding B, Ma Y, Jim YL (2013) Nanostructured SnO2@TiO2 core-shell composites: a high-rate Li-ion anode material usable without conductive additives. Energy Technol 1:567–572CrossRef Ji G, Ding B, Ma Y, Jim YL (2013) Nanostructured SnO2@TiO2 core-shell composites: a high-rate Li-ion anode material usable without conductive additives. Energy Technol 1:567–572CrossRef
28.
go back to reference Zhang PP, Zhu SS, He ZS, Wang K, Fan HQ, Zhong Y, Chang L, Shao HB, Wang JM, Zhang JQ, Cao CN (2016) Photochemical synthesis of SnO2/TiO2 composite nanotube arrays with enhanced lithium storage performance. J Alloy Compd 674:1–8CrossRef Zhang PP, Zhu SS, He ZS, Wang K, Fan HQ, Zhong Y, Chang L, Shao HB, Wang JM, Zhang JQ, Cao CN (2016) Photochemical synthesis of SnO2/TiO2 composite nanotube arrays with enhanced lithium storage performance. J Alloy Compd 674:1–8CrossRef
29.
go back to reference Chen YF, Du N, Zhang H, Yang DR (2015) Facile synthesis of uniform MWCNT@Si nanocomposites as high-performance anode materials for lithium-ion batteries. J Alloy Compd 622:966–972CrossRef Chen YF, Du N, Zhang H, Yang DR (2015) Facile synthesis of uniform MWCNT@Si nanocomposites as high-performance anode materials for lithium-ion batteries. J Alloy Compd 622:966–972CrossRef
30.
go back to reference Uysal M, Cetinkaya T, Alp A, Akbulut H (2015) Fabrication of Sn–Ni/MWCNT composite coating for Li-ion batteries by pulse electrodeposition: effects of duty cycle. Appl Surf Sci 334:80–86CrossRef Uysal M, Cetinkaya T, Alp A, Akbulut H (2015) Fabrication of Sn–Ni/MWCNT composite coating for Li-ion batteries by pulse electrodeposition: effects of duty cycle. Appl Surf Sci 334:80–86CrossRef
31.
go back to reference Yin YH, Zhang XT, Jia YJ, Cao ZX, Yang ST (2015) Facile synthesis of Fe2O3/MWCNT composites with improved cycling stability. RSC Adv 5:1447–1451CrossRef Yin YH, Zhang XT, Jia YJ, Cao ZX, Yang ST (2015) Facile synthesis of Fe2O3/MWCNT composites with improved cycling stability. RSC Adv 5:1447–1451CrossRef
32.
go back to reference Sun B, Huang K, Qi X, Wei XL, Zhong JX (2015) Rational construction of a functionalized V2O5 nanosphere/MWCNT layer-by-layer nanoarchitecture as cathode for enhanced performance of lithium-ion batteries. Adv Funct Mater 25:5633–5639CrossRef Sun B, Huang K, Qi X, Wei XL, Zhong JX (2015) Rational construction of a functionalized V2O5 nanosphere/MWCNT layer-by-layer nanoarchitecture as cathode for enhanced performance of lithium-ion batteries. Adv Funct Mater 25:5633–5639CrossRef
33.
go back to reference Majid H, Ali AY, Mohammad JZM, Alexandre FL, Matthieu PP, Philippe C, Angélique L, Nathalie J (2015) Correlation between morphology and electrical conductivity of dried and carbonized multi-walled carbon nanotube/resorcinol–formaldehyde xerogel composites. J Mater Sci 50:6007–6020. doi:10.1007/s10853-015-9148-0 CrossRef Majid H, Ali AY, Mohammad JZM, Alexandre FL, Matthieu PP, Philippe C, Angélique L, Nathalie J (2015) Correlation between morphology and electrical conductivity of dried and carbonized multi-walled carbon nanotube/resorcinol–formaldehyde xerogel composites. J Mater Sci 50:6007–6020. doi:10.​1007/​s10853-015-9148-0 CrossRef
34.
go back to reference Bavykin DV, Friedrich JM, Walsh FC (2006) Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv Mater 18:2807–2824CrossRef Bavykin DV, Friedrich JM, Walsh FC (2006) Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv Mater 18:2807–2824CrossRef
35.
go back to reference Mukherjee R, Krishnan R, Lu TM, Koratkar N (2012) Nanostructured electrodes for high-power lithium ion batteries. Nano Energy 1:518–533CrossRef Mukherjee R, Krishnan R, Lu TM, Koratkar N (2012) Nanostructured electrodes for high-power lithium ion batteries. Nano Energy 1:518–533CrossRef
36.
go back to reference Lin KZ, Xu YH, He GR, Wang XL (2006) The kinetic and thermodynamic analysis of Li ion in multi-walled carbon nanotubes. Mater Chem Phys 99:190–196CrossRef Lin KZ, Xu YH, He GR, Wang XL (2006) The kinetic and thermodynamic analysis of Li ion in multi-walled carbon nanotubes. Mater Chem Phys 99:190–196CrossRef
37.
go back to reference Szabo DV, Kilibarda G, Schlabach S, Trouillet V, Bruns M (2012) Structural and chemical characterization of SnO2-based nanoparticles as electrode material in Li-ion batteries. J Mater Sci 47:4383–4391. doi:10.1007/s10853-012-6292-7 CrossRef Szabo DV, Kilibarda G, Schlabach S, Trouillet V, Bruns M (2012) Structural and chemical characterization of SnO2-based nanoparticles as electrode material in Li-ion batteries. J Mater Sci 47:4383–4391. doi:10.​1007/​s10853-012-6292-7 CrossRef
38.
go back to reference Wan N, Lu X, Wang YS, Zhang WF, Bai Y, Hu YS, Dai S (2016) Improved Li storage performance in SnO2 nanocrystals by a synergetic doping. Sci Rep 6:18976. doi:10.1038/srep18978 CrossRef Wan N, Lu X, Wang YS, Zhang WF, Bai Y, Hu YS, Dai S (2016) Improved Li storage performance in SnO2 nanocrystals by a synergetic doping. Sci Rep 6:18976. doi:10.​1038/​srep18978 CrossRef
39.
go back to reference Giannuzzi R, Manca M, Marco LD, Belviso MR, Cannavale A, Sibillano T, Giannini C, Cozzoli PD, Gigli G (2014) Ultrathin TiO2(B) nanorods with superior lithium-ion storage performance. ACS Appl Mater Interfaces 6:1933–1943CrossRef Giannuzzi R, Manca M, Marco LD, Belviso MR, Cannavale A, Sibillano T, Giannini C, Cozzoli PD, Gigli G (2014) Ultrathin TiO2(B) nanorods with superior lithium-ion storage performance. ACS Appl Mater Interfaces 6:1933–1943CrossRef
40.
go back to reference Jiang YZ, Li Y, Zhou P, Yu SL, Sun WP, Dou SX (2015) Enhanced reaction kinetics and structure integrity of Ni/SnO2 nanocluster toward high-performance lithium storage. ACS Appl Mater Interfaces 7:26367–26373CrossRef Jiang YZ, Li Y, Zhou P, Yu SL, Sun WP, Dou SX (2015) Enhanced reaction kinetics and structure integrity of Ni/SnO2 nanocluster toward high-performance lithium storage. ACS Appl Mater Interfaces 7:26367–26373CrossRef
41.
go back to reference Liu XW, Zhong XW, Yang ZZ, Pan FS, Gu L, Yu Y (2015) Gram-scale synthesis of graphene-mesoporous SnO2 composite as anode for lithium-ion batteries. Electrochim Acta 152:178–186CrossRef Liu XW, Zhong XW, Yang ZZ, Pan FS, Gu L, Yu Y (2015) Gram-scale synthesis of graphene-mesoporous SnO2 composite as anode for lithium-ion batteries. Electrochim Acta 152:178–186CrossRef
42.
go back to reference Ren GF, Hoque NFM, Liu JW, Warzywoda J, Fan ZY (2016) Perpendicular edge oriented graphene foam supporting orthogonal TiO2(B) nanosheets as freestanding electrode for lithium ion battery. Nano Energy 21:162–171CrossRef Ren GF, Hoque NFM, Liu JW, Warzywoda J, Fan ZY (2016) Perpendicular edge oriented graphene foam supporting orthogonal TiO2(B) nanosheets as freestanding electrode for lithium ion battery. Nano Energy 21:162–171CrossRef
43.
go back to reference Torrente ML, Lapkin AA, Chadwick D (2010) Synthesis of high aspect ratio titanate nanotubes. J Mater Chem 20:6484–6489CrossRef Torrente ML, Lapkin AA, Chadwick D (2010) Synthesis of high aspect ratio titanate nanotubes. J Mater Chem 20:6484–6489CrossRef
44.
go back to reference Itagaki M, Honda K, Hoshi Y, Shitanda I (2015) In-situ EIS to determine impedance spectra of lithium-ion rechargeable batteries during charge and discharge cycle. J Electroanal Chem 737:78–84CrossRef Itagaki M, Honda K, Hoshi Y, Shitanda I (2015) In-situ EIS to determine impedance spectra of lithium-ion rechargeable batteries during charge and discharge cycle. J Electroanal Chem 737:78–84CrossRef
Metadata
Title
A novel MWCNT/nanotubular TiO2(B) loaded with SnO2 nanocrystals ternary composite as anode material for lithium-ion batteries
Authors
Jiao Zheng
Daqian Ma
Xiangfeng Wu
Peng Dou
Zhenzhen Cao
Chao Wang
Xinhua Xu
Publication date
28-11-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 6/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0578-0

Other articles of this Issue 6/2017

Journal of Materials Science 6/2017 Go to the issue

Premium Partners