Skip to main content
Top
Published in: Journal of Applied Mathematics and Computing 1-2/2021

23-11-2020 | Original Research

A novel numerical scheme for a time fractional Black–Scholes equation

Authors: Mianfu She, Lili Li, Renxuan Tang, Dongfang Li

Published in: Journal of Applied Mathematics and Computing | Issue 1-2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper consists of two parts. On one hand, the regularity of the solution of the time-fractional Black–Scholes equation is investigated. On the other hand, to overcome the difficulty of initial layer, a modified L1 time discretization is presented based on a change of variable. And the spatial discretization is done by using the Chebyshev Galerkin method. Optimal error estimates of the fully-discrete scheme are obtained. Finally, several numerical results are given to confirm the theoretical results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973)MathSciNetMATH Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973)MathSciNetMATH
2.
3.
4.
go back to reference Liang, J., Wang, J., Zhang, W., Qiu, W., Ren, F.: Option pricing of a bi-fractional Black–Merton–Scholes model with the Hurst exponent H in \([\frac{1}{2},1]\). Appl. Math. Lett. 23, 859–863 (2010)MathSciNetMATH Liang, J., Wang, J., Zhang, W., Qiu, W., Ren, F.: Option pricing of a bi-fractional Black–Merton–Scholes model with the Hurst exponent H in \([\frac{1}{2},1]\). Appl. Math. Lett. 23, 859–863 (2010)MathSciNetMATH
5.
go back to reference Jena, R.M., Chakraverty, S., Baleanu, D.: A novel analytical technique for the solution of time-fractional Ivancevic option pricing model. Physica A. 550, 124380 (2020)MathSciNet Jena, R.M., Chakraverty, S., Baleanu, D.: A novel analytical technique for the solution of time-fractional Ivancevic option pricing model. Physica A. 550, 124380 (2020)MathSciNet
6.
go back to reference Chen, W., Xu, X., Zhu, S.P.: Analytically pricing double barrier options based on a time-fractional Black–Scholes equation. Comput. Math. Appl. 69, 1407–1419 (2015)MathSciNetMATH Chen, W., Xu, X., Zhu, S.P.: Analytically pricing double barrier options based on a time-fractional Black–Scholes equation. Comput. Math. Appl. 69, 1407–1419 (2015)MathSciNetMATH
7.
go back to reference Zhang, H., Liu, F., Turner, I., Yang, Q.: Numerical solution of the time fractional Black–Scholes model governing European options. Comput. Math. Appl. 71, 1772–1783 (2016)MathSciNetMATH Zhang, H., Liu, F., Turner, I., Yang, Q.: Numerical solution of the time fractional Black–Scholes model governing European options. Comput. Math. Appl. 71, 1772–1783 (2016)MathSciNetMATH
8.
go back to reference Dubey, V.P., Kumar, R., Kumar, D.: A reliable treatment of residual power series method for time-fractional Black–Scholes European option pricing equation. Physica A. 533, 122040 (2019)MathSciNet Dubey, V.P., Kumar, R., Kumar, D.: A reliable treatment of residual power series method for time-fractional Black–Scholes European option pricing equation. Physica A. 533, 122040 (2019)MathSciNet
9.
go back to reference Roul, P.: A high accuracy numerical method and its convergence for time-fractional Black–Scholes equation governing European options. Appl. Numer. Math. 151, 472–493 (2020)MathSciNetMATH Roul, P.: A high accuracy numerical method and its convergence for time-fractional Black–Scholes equation governing European options. Appl. Numer. Math. 151, 472–493 (2020)MathSciNetMATH
10.
go back to reference De Staelen, R.H., Hendy, A.S.: Numerically pricing double barrier options in a time-fractional Black–Scholes model. Comput. Math. Appl. 74, 1166–1175 (2017)MathSciNetMATH De Staelen, R.H., Hendy, A.S.: Numerically pricing double barrier options in a time-fractional Black–Scholes model. Comput. Math. Appl. 74, 1166–1175 (2017)MathSciNetMATH
11.
go back to reference Kumar, S., Kumar, D., Singh, J.: Numerical computation of fractional Black–Scholes equation arising in financial market. Egyptian J. Basic Appl. Sci. 1, 177–193 (2014) Kumar, S., Kumar, D., Singh, J.: Numerical computation of fractional Black–Scholes equation arising in financial market. Egyptian J. Basic Appl. Sci. 1, 177–193 (2014)
12.
go back to reference Koleva, M.N., Vulkov, L.G.: Numerical solution of time-fractional Black–Scholes equation. J. Comput. Appl. Math. 36, 1699–1715 (2017)MathSciNetMATH Koleva, M.N., Vulkov, L.G.: Numerical solution of time-fractional Black–Scholes equation. J. Comput. Appl. Math. 36, 1699–1715 (2017)MathSciNetMATH
13.
go back to reference Yang, X., Wu, L., Sun, S., Zhang, X.: A universal difference method for time-space fractional Black–Scholes equation. Adv. Differ. Equ. 71, 1–14 (2016)MathSciNetMATH Yang, X., Wu, L., Sun, S., Zhang, X.: A universal difference method for time-space fractional Black–Scholes equation. Adv. Differ. Equ. 71, 1–14 (2016)MathSciNetMATH
14.
go back to reference Li, D., Liao, H., Sun, W., Wang, J., Zhang, J.: Analysis of L1-Galerkin FEMs for time fractional nonlinear parabolic problems. Commun. Comput. Phys. 24, 86–103 (2018)MathSciNet Li, D., Liao, H., Sun, W., Wang, J., Zhang, J.: Analysis of L1-Galerkin FEMs for time fractional nonlinear parabolic problems. Commun. Comput. Phys. 24, 86–103 (2018)MathSciNet
15.
go back to reference Li, D., Wang, J., Zhang, J.: Unconditionally convergent \(L1\)-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM J. Sci. Comput. 39, 3067–3088 (2017)MathSciNetMATH Li, D., Wang, J., Zhang, J.: Unconditionally convergent \(L1\)-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM J. Sci. Comput. 39, 3067–3088 (2017)MathSciNetMATH
16.
go back to reference Zhang, Q., Ran, M., Xu, D.: Analysis of the compact difference scheme for the semilinear fractional partial differential equation with time delay. Appl. Anal. 96, 1867–1884 (2017)MathSciNetMATH Zhang, Q., Ran, M., Xu, D.: Analysis of the compact difference scheme for the semilinear fractional partial differential equation with time delay. Appl. Anal. 96, 1867–1884 (2017)MathSciNetMATH
17.
go back to reference Sun, Z.Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)MathSciNetMATH Sun, Z.Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)MathSciNetMATH
18.
go back to reference Roul, P.: Analytical approach for the nonlinear partial differential equations of fractional order. Commun. Theor. Phys. 60, 269–277 (2013)MathSciNetMATH Roul, P.: Analytical approach for the nonlinear partial differential equations of fractional order. Commun. Theor. Phys. 60, 269–277 (2013)MathSciNetMATH
19.
go back to reference Mao, Z., Karniadakis, G.E.: A spectral method (of exponential convergence) for singular solutions of the diffusion equation with general two-sided fractional derivative. SIAM J. Numer. Anal. 56, 24–49 (2018)MathSciNetMATH Mao, Z., Karniadakis, G.E.: A spectral method (of exponential convergence) for singular solutions of the diffusion equation with general two-sided fractional derivative. SIAM J. Numer. Anal. 56, 24–49 (2018)MathSciNetMATH
20.
go back to reference Chen, X., Di, Y., Duan, J., Li, D.: Linearized compact ADI schems for nonlinear time-fractional Schrödinger equations. Appl. Math. Lett. 84, 160–167 (2018)MathSciNetMATH Chen, X., Di, Y., Duan, J., Li, D.: Linearized compact ADI schems for nonlinear time-fractional Schrödinger equations. Appl. Math. Lett. 84, 160–167 (2018)MathSciNetMATH
21.
go back to reference Sheng, C., Shen, J.: A space-time Petrov–Galerkin spectral method for time fractional diffusion equation. Numer. Math. Theor. Meth. Appl. 11, 854–876 (2018)MathSciNetMATH Sheng, C., Shen, J.: A space-time Petrov–Galerkin spectral method for time fractional diffusion equation. Numer. Math. Theor. Meth. Appl. 11, 854–876 (2018)MathSciNetMATH
22.
go back to reference Sun, H., Sun, Z., Du, R.: A linearized second-order difference scheme for the nonlinear time-fractional fourth-order reaction-diffusion equation. Numer. Math. Theor. Meth. Appl. 12, 1168–1190 (2019)MathSciNetMATH Sun, H., Sun, Z., Du, R.: A linearized second-order difference scheme for the nonlinear time-fractional fourth-order reaction-diffusion equation. Numer. Math. Theor. Meth. Appl. 12, 1168–1190 (2019)MathSciNetMATH
23.
go back to reference Cui, M.: Finite difference schemes for the variable coefficients single and multi-term time-fractional diffusion equations with non-smooth solutions on graded and uniform meshes. Numer. Math. Theor. Meth. Appl. 12, 1004–8979 (2019)MathSciNet Cui, M.: Finite difference schemes for the variable coefficients single and multi-term time-fractional diffusion equations with non-smooth solutions on graded and uniform meshes. Numer. Math. Theor. Meth. Appl. 12, 1004–8979 (2019)MathSciNet
24.
go back to reference Ran, M., Zhang, C.: A high-order accuracy method for solving the fractional diffusion equations. J. Comput. Math. 38, 239–253 (2020)MathSciNetMATH Ran, M., Zhang, C.: A high-order accuracy method for solving the fractional diffusion equations. J. Comput. Math. 38, 239–253 (2020)MathSciNetMATH
25.
go back to reference Kopteva, N., Stynes, M.: An efficient collocation method for a Caputo two-point boundary value problem. BIT. 55, 1105–1123 (2015)MathSciNetMATH Kopteva, N., Stynes, M.: An efficient collocation method for a Caputo two-point boundary value problem. BIT. 55, 1105–1123 (2015)MathSciNetMATH
26.
go back to reference Stynes, M., Gracia, J.L.: A finite difference method for a two- point boundary value problem with a Caputo fractional derivative. IMA J. Numer. Anal. 35, 689–721 (2015)MathSciNetMATH Stynes, M., Gracia, J.L.: A finite difference method for a two- point boundary value problem with a Caputo fractional derivative. IMA J. Numer. Anal. 35, 689–721 (2015)MathSciNetMATH
27.
go back to reference Gracia, J.L., Stynes, M.: Central difference approximation of convection in Caputo fractional derivative two-point boundary value problems. J. Comput. Appl. Math. 273, 103–115 (2015)MathSciNetMATH Gracia, J.L., Stynes, M.: Central difference approximation of convection in Caputo fractional derivative two-point boundary value problems. J. Comput. Appl. Math. 273, 103–115 (2015)MathSciNetMATH
28.
go back to reference Li, L., Li, D.: Exact solutions and numerical study of time fractional Burgers’ equations. Appl. Math. Lett. 100, 106011 (2020)MathSciNetMATH Li, L., Li, D.: Exact solutions and numerical study of time fractional Burgers’ equations. Appl. Math. Lett. 100, 106011 (2020)MathSciNetMATH
29.
go back to reference Jin, B., Li, B., Zhou, Z.: Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56, 1–23 (2018)MathSciNetMATH Jin, B., Li, B., Zhou, Z.: Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56, 1–23 (2018)MathSciNetMATH
31.
go back to reference Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)MathSciNetMATH Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)MathSciNetMATH
32.
go back to reference Cen, Z., Huang, J., Xu, A., Le, A.: Numerical approximation of a time-fractional Black–Scholes equation. Comput. Math. Appl. 75, 2874–2887 (2018)MathSciNetMATH Cen, Z., Huang, J., Xu, A., Le, A.: Numerical approximation of a time-fractional Black–Scholes equation. Comput. Math. Appl. 75, 2874–2887 (2018)MathSciNetMATH
33.
go back to reference Li, D., Wu, C., Zhang, J.: Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction. J. Sci. Comput. 80, 403–419 (2019)MathSciNetMATH Li, D., Wu, C., Zhang, J.: Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction. J. Sci. Comput. 80, 403–419 (2019)MathSciNetMATH
34.
go back to reference Kopteva, N.: Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comput. 88, 2135–2155 (2019)MathSciNetMATH Kopteva, N.: Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comput. 88, 2135–2155 (2019)MathSciNetMATH
35.
go back to reference Cao, W., Zeng, F., Zhang, Z., Karniadakis, G.E.: Implicit-Explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions. SIAM J. Sci. Comput. 38, 3070–3093 (2016)MathSciNetMATH Cao, W., Zeng, F., Zhang, Z., Karniadakis, G.E.: Implicit-Explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions. SIAM J. Sci. Comput. 38, 3070–3093 (2016)MathSciNetMATH
36.
go back to reference Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39, 3129–3152 (2017)MathSciNet Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39, 3129–3152 (2017)MathSciNet
37.
go back to reference Courant, R., Hilbert, D., Bergmann, P.: Methods of Mathematical Physics. Interscience Publishers Inc, New York (1953)MATH Courant, R., Hilbert, D., Bergmann, P.: Methods of Mathematical Physics. Interscience Publishers Inc, New York (1953)MATH
38.
go back to reference Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH
39.
go back to reference Shen, J., Tang, T., Wang, L.L.: Spectral Methods. Springer, Heidelberg (2011)MATH Shen, J., Tang, T., Wang, L.L.: Spectral Methods. Springer, Heidelberg (2011)MATH
40.
go back to reference Canuto, C., Quarteroni, A.: Approximation results for orthognal polynomials in Sobolev Spaces. Math. Comput. 38, 67–86 (1982)MATH Canuto, C., Quarteroni, A.: Approximation results for orthognal polynomials in Sobolev Spaces. Math. Comput. 38, 67–86 (1982)MATH
41.
go back to reference Bressan, N., Quarteroni, A.: Analysis of Chebyshev collocation methods for parabolic equations. SIAM J. Numer. Anal. 23, 1138–1154 (1986)MathSciNetMATH Bressan, N., Quarteroni, A.: Analysis of Chebyshev collocation methods for parabolic equations. SIAM J. Numer. Anal. 23, 1138–1154 (1986)MathSciNetMATH
42.
go back to reference Thomée, V.: Galerkin finite element methods for parabolic problems. Springer, Berlin (2006)MATH Thomée, V.: Galerkin finite element methods for parabolic problems. Springer, Berlin (2006)MATH
43.
go back to reference Zhou, B., Chen, X., Li, D.: Nonuniform Alikhanov linearized Galerkin finite element methods for nonlinear time-fractional parabolic equations. J. Sci. Comput. 85, 39 (2020)MathSciNetMATH Zhou, B., Chen, X., Li, D.: Nonuniform Alikhanov linearized Galerkin finite element methods for nonlinear time-fractional parabolic equations. J. Sci. Comput. 85, 39 (2020)MathSciNetMATH
Metadata
Title
A novel numerical scheme for a time fractional Black–Scholes equation
Authors
Mianfu She
Lili Li
Renxuan Tang
Dongfang Li
Publication date
23-11-2020
Publisher
Springer Berlin Heidelberg
Published in
Journal of Applied Mathematics and Computing / Issue 1-2/2021
Print ISSN: 1598-5865
Electronic ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-020-01467-9

Other articles of this Issue 1-2/2021

Journal of Applied Mathematics and Computing 1-2/2021 Go to the issue

Premium Partner