Skip to main content
Top

2023 | OriginalPaper | Chapter

A Novel Oversampling Technique for Imbalanced Credit Scoring Datasets

Authors : Sudhansu Ranjan Lenka, Sukant Kishoro Bisoy, Rojalina Priyadarshini, Jhalak Hota

Published in: Intelligent Systems and Machine Learning

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The imbalanced class distribution of credit-scoring datasets typically makes the learning algorithms ineffective. In this study, NOSTE is proposed, a novel oversampling technique. It first identifies the informative minority instances by eliminating the noisy samples from the minority subset. Then, weight is assigned to the informative minority instances by considering the density and distance factors. Finally, new minority instances are created by determining the average of two different minority instances to make the dataset balanced. In the experimental study, NOSTE performance is validated by conducting an extensive comparison with four popular oversampling methods using three credit-scoring datasets from the UCI repository. The results confirmed that the proposed method brings significant improvement in the classification in terms of F-measure and AUC (Area under the Curve).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
9.
go back to reference Bunkhumpornpat, C., Sinapiromsaran, K., Lursinsap, C.: Safe-Level-SMOTE: safe-level-synthetic minority over-sampling TEchnique for handling the class imbalanced problem. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 475–482. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01307-2_43CrossRef Bunkhumpornpat, C., Sinapiromsaran, K., Lursinsap, C.: Safe-Level-SMOTE: safe-level-synthetic minority over-sampling TEchnique for handling the class imbalanced problem. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 475–482. Springer, Heidelberg (2009). https://​doi.​org/​10.​1007/​978-3-642-01307-2_​43CrossRef
Metadata
Title
A Novel Oversampling Technique for Imbalanced Credit Scoring Datasets
Authors
Sudhansu Ranjan Lenka
Sukant Kishoro Bisoy
Rojalina Priyadarshini
Jhalak Hota
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-35081-8_12

Premium Partner