Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

06-02-2023 | Original Paper

A novel pattern recognition-based plan for islanding detection in distribution systems in the presence of synchronous generator-based distributed generation resources

Authors: Siavash Shadpey, Mohammad Chegini, Mohammad-Taghi Ameli

Published in: Electrical Engineering

Login to get access
share
SHARE

Abstract

A pattern recognition-based plan for detecting islanding and non-islanding conditions is presented in this paper. This plan is used in distribution systems in the presence of synchronous generator-based distributed generation resources with doubly fed induction generators (DFIGs), a generating principle widely used in wind turbines. The main idea behind the suggested plan is the measurement of total magnetomotive force (MMF) in the SG air gap less than 2 s based on IEEE std.1547 after the occurrence of islanding and non-islanding events. First, a mathematical morphology (MM) filter was used to lessen the possible noise in a total MMF signal sampled in SGs. Then, spatial features like variation, energy, median, rms and mean values of the output magnitude of MM filter were computed. Finally, to distinguish the islanding condition from the non-islanding conditions, support vector machine (SVM) classifier with radial basis function (RBF) kernel was taught based on the above-mentioned features. Different scenarios were considered in various loading conditions in distribution systems for the occurrence of islanding and non-islanding conditions and the determination of the ability of the suggested plan. The outcomes show the method suggested with the SVM (RBF kernel) classifier has much better results in comparison with some other methods.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Li C, Cao C, Cao Y, Kuang Y, Zeng L, Fang B (2014) A review of islanding detection methods for microgrid. Renew Sustain Energy Rev 35:211–220 CrossRef Li C, Cao C, Cao Y, Kuang Y, Zeng L, Fang B (2014) A review of islanding detection methods for microgrid. Renew Sustain Energy Rev 35:211–220 CrossRef
2.
go back to reference Photovoltaics DG, Storage E (2009) IEEE Application Guide for IEEE Std 1547™, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems Photovoltaics DG, Storage E (2009) IEEE Application Guide for IEEE Std 1547™, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems
3.
go back to reference Bayrak G, Kabalci E (2016) Implementation of a new remote islanding detection method for wind–solar hybrid power plants. Renew Sustain Energy Rev 58:1–15 CrossRef Bayrak G, Kabalci E (2016) Implementation of a new remote islanding detection method for wind–solar hybrid power plants. Renew Sustain Energy Rev 58:1–15 CrossRef
4.
go back to reference Murugesan S, Murali V (2020) Active unintentional islanding detection method for multiple-PMSG-based DGs. IEEE Trans Ind Appl 56(5):4700–4708 CrossRef Murugesan S, Murali V (2020) Active unintentional islanding detection method for multiple-PMSG-based DGs. IEEE Trans Ind Appl 56(5):4700–4708 CrossRef
5.
go back to reference Abd-Elkader AG, Saleh SM, Eiteba MM (2018) A passive islanding detection strategy for multi-distributed generations. Int J Electr Power Energy Syst 99:146–155 CrossRef Abd-Elkader AG, Saleh SM, Eiteba MM (2018) A passive islanding detection strategy for multi-distributed generations. Int J Electr Power Energy Syst 99:146–155 CrossRef
6.
go back to reference Seyedi M, Taher SA, Ganji B, Guerrero J (2021) A hybrid islanding detection method based on the rates of changes in voltage and active power for the multi-inverter systems. IEEE Trans Smart Grid 12(4):2800–2811 CrossRef Seyedi M, Taher SA, Ganji B, Guerrero J (2021) A hybrid islanding detection method based on the rates of changes in voltage and active power for the multi-inverter systems. IEEE Trans Smart Grid 12(4):2800–2811 CrossRef
7.
go back to reference Elazzaoui M (2021) An effective islanding detection method with wavelet based nuisance tripping suppressing. IEEE Trans Power Electron 36(12):13792–13801 CrossRef Elazzaoui M (2021) An effective islanding detection method with wavelet based nuisance tripping suppressing. IEEE Trans Power Electron 36(12):13792–13801 CrossRef
8.
go back to reference Do HT, Zhang X, Nguyen NV, Li SS, Chu TT (2016) Passive-islanding detection method using the wavelet packet transform in grid-connected photovoltaic systems. IEEE Trans Power Electron 31(10):6955–6967 Do HT, Zhang X, Nguyen NV, Li SS, Chu TT (2016) Passive-islanding detection method using the wavelet packet transform in grid-connected photovoltaic systems. IEEE Trans Power Electron 31(10):6955–6967
9.
go back to reference Paiva SC, de Araujo Ribeiro RL, Alves DK, Costa FB, Rocha TD (2020) A wavelet-based hybrid islanding detection system applied for distributed generators interconnected to AC microgrids. Int J Electr Power Energy Syst 121:106032 CrossRef Paiva SC, de Araujo Ribeiro RL, Alves DK, Costa FB, Rocha TD (2020) A wavelet-based hybrid islanding detection system applied for distributed generators interconnected to AC microgrids. Int J Electr Power Energy Syst 121:106032 CrossRef
10.
go back to reference Kaushik R, Mahela OP, Bhatt PK, Khan B, Garg AR, Alhelou HH, Siano P (2020) Recognition of islanding and operational events in power system with renewable energy penetration using a Stockwell transform-based method. IEEE Syst J 16(1):166–175 CrossRef Kaushik R, Mahela OP, Bhatt PK, Khan B, Garg AR, Alhelou HH, Siano P (2020) Recognition of islanding and operational events in power system with renewable energy penetration using a Stockwell transform-based method. IEEE Syst J 16(1):166–175 CrossRef
11.
go back to reference Mohanty SR, Kishor N, Ray PK, Catalo JP (2014) Comparative study of advanced signal processing techniques for islanding detection in a hybrid distributed generation system. IEEE Trans Sustain Energy 6(1):122–131 CrossRef Mohanty SR, Kishor N, Ray PK, Catalo JP (2014) Comparative study of advanced signal processing techniques for islanding detection in a hybrid distributed generation system. IEEE Trans Sustain Energy 6(1):122–131 CrossRef
12.
go back to reference Mishra M, Rout PK (2019) Fast discrete s-transform and extreme learning machine-based approach to islanding detection in grid-connected distributed generation. Energy Syst 10(3):757–789 CrossRef Mishra M, Rout PK (2019) Fast discrete s-transform and extreme learning machine-based approach to islanding detection in grid-connected distributed generation. Energy Syst 10(3):757–789 CrossRef
13.
go back to reference Ezzat A, Elnaghi BE, Abdelsalam AA (2021) Microgrids islanding detection using Fourier transform and machine learning algorithm. Electr Power Syst Res 196:107224 CrossRef Ezzat A, Elnaghi BE, Abdelsalam AA (2021) Microgrids islanding detection using Fourier transform and machine learning algorithm. Electr Power Syst Res 196:107224 CrossRef
14.
go back to reference Haider R, Kim CH, Ghanbari T, Bukhari SB (2018) Harmonic-signature-based islanding detection in grid-connected distributed generation systems using Kalman filter. IET Renew Power Gener 12(15):1813–1822 CrossRef Haider R, Kim CH, Ghanbari T, Bukhari SB (2018) Harmonic-signature-based islanding detection in grid-connected distributed generation systems using Kalman filter. IET Renew Power Gener 12(15):1813–1822 CrossRef
15.
go back to reference Vahedi H, Gharehpetian GB, Karrari M (2012) Application of duffing oscillators for passive islanding detection of inverter-based distributed generation units. IEEE Trans Power Deliv 27(4):1973–1983 CrossRef Vahedi H, Gharehpetian GB, Karrari M (2012) Application of duffing oscillators for passive islanding detection of inverter-based distributed generation units. IEEE Trans Power Deliv 27(4):1973–1983 CrossRef
16.
go back to reference Farhan MA, Swarup KS (2016) Mathematical morphology-based islanding detection for distributed generation. IET Gener Transm Distrib 10(2):518–525 CrossRef Farhan MA, Swarup KS (2016) Mathematical morphology-based islanding detection for distributed generation. IET Gener Transm Distrib 10(2):518–525 CrossRef
17.
go back to reference Heidari M, Seifossadat G, Razaz M (2013) Application of decision tree and discrete wavelet transform for an optimized intelligent-based islanding detection method in distributed systems with distributed generations. Renew Sustain Energy Rev 27:525–532 CrossRef Heidari M, Seifossadat G, Razaz M (2013) Application of decision tree and discrete wavelet transform for an optimized intelligent-based islanding detection method in distributed systems with distributed generations. Renew Sustain Energy Rev 27:525–532 CrossRef
18.
go back to reference Samet H, Hashemi F, Ghanbari T (2015) Minimum non detection zone for islanding detection using an optimal Artificial Neural Network algorithm based on PSO. Renew Sustain Energy Rev 52:1–18 CrossRef Samet H, Hashemi F, Ghanbari T (2015) Minimum non detection zone for islanding detection using an optimal Artificial Neural Network algorithm based on PSO. Renew Sustain Energy Rev 52:1–18 CrossRef
19.
go back to reference Baghaee HR, Mlakić D, Nikolovski S, Dragicević T (2019) Support vector machine-based islanding and grid fault detection in active distribution networks. IEEE J Emerging Sel Top Power Electron 8(3):2385–2403 CrossRef Baghaee HR, Mlakić D, Nikolovski S, Dragicević T (2019) Support vector machine-based islanding and grid fault detection in active distribution networks. IEEE J Emerging Sel Top Power Electron 8(3):2385–2403 CrossRef
20.
go back to reference Khamis A, Shareef H, Mohamed A, Bizkevelci E (2015) Islanding detection in a distributed generation integrated power system using phase space technique and probabilistic neural network. Neurocomputing 148:587–599 CrossRef Khamis A, Shareef H, Mohamed A, Bizkevelci E (2015) Islanding detection in a distributed generation integrated power system using phase space technique and probabilistic neural network. Neurocomputing 148:587–599 CrossRef
21.
go back to reference Mlakić D, Baghaee HR, Nikolovski S (2018) A novel ANFIS-based islanding detection for inverter-interfaced microgrids. IEEE Trans Smart Grid 10(4):4411–4424 CrossRef Mlakić D, Baghaee HR, Nikolovski S (2018) A novel ANFIS-based islanding detection for inverter-interfaced microgrids. IEEE Trans Smart Grid 10(4):4411–4424 CrossRef
22.
go back to reference Dash PK, Padhee M, Panigrahi TK (2012) A hybrid time–frequency approach based fuzzy logic system for power island detection in grid connected distributed generation. Int J Electr Power Energy Syst 42(1):453–464 CrossRef Dash PK, Padhee M, Panigrahi TK (2012) A hybrid time–frequency approach based fuzzy logic system for power island detection in grid connected distributed generation. Int J Electr Power Energy Syst 42(1):453–464 CrossRef
23.
go back to reference Kong X, Xu X, Yan Z, Chen S, Yang H, Han D (2018) Deep learning hybrid method for islanding detection in distributed generation. Appl Energy 210:776–785 CrossRef Kong X, Xu X, Yan Z, Chen S, Yang H, Han D (2018) Deep learning hybrid method for islanding detection in distributed generation. Appl Energy 210:776–785 CrossRef
24.
go back to reference Wu QH, Lu Z, Ji T (2009) Protective relaying of power systems using mathematical morphology. Springer Wu QH, Lu Z, Ji T (2009) Protective relaying of power systems using mathematical morphology. Springer
25.
go back to reference Bimbhra PS, Garg GC (2014) Electrical machines-I. Khanna Publishing House Bimbhra PS, Garg GC (2014) Electrical machines-I. Khanna Publishing House
27.
go back to reference Hsu CW, Chang CC, Lin CJ (2016) A practical guide to support vector classification Hsu CW, Chang CC, Lin CJ (2016) A practical guide to support vector classification
28.
go back to reference El-Arroudi K, Joos G (2007) Data mining approach to threshold settings of islanding relays in distributed generation. IEEE Trans Power Syst 22(3):1112–1119 CrossRef El-Arroudi K, Joos G (2007) Data mining approach to threshold settings of islanding relays in distributed generation. IEEE Trans Power Syst 22(3):1112–1119 CrossRef
29.
go back to reference Wu X, Kumar V (eds) (2009) The top ten algorithms in data mining. CRC Press Wu X, Kumar V (eds) (2009) The top ten algorithms in data mining. CRC Press
30.
go back to reference Taud H, Mas JF (2018) Multilayer perceptron (MLP). In: Geomatic approaches for modeling land change scenarios. Springer, Cham, pp 451–455 Taud H, Mas JF (2018) Multilayer perceptron (MLP). In: Geomatic approaches for modeling land change scenarios. Springer, Cham, pp 451–455
31.
go back to reference Chavoshi SA, Noroozian R, Amiri A (2016) Islanding detection of synchronous distributed generation resources using AdaBoost algorithm. Int Trans Electr Energy Syst 26(8):1604–1624 CrossRef Chavoshi SA, Noroozian R, Amiri A (2016) Islanding detection of synchronous distributed generation resources using AdaBoost algorithm. Int Trans Electr Energy Syst 26(8):1604–1624 CrossRef
Metadata
Title
A novel pattern recognition-based plan for islanding detection in distribution systems in the presence of synchronous generator-based distributed generation resources
Authors
Siavash Shadpey
Mohammad Chegini
Mohammad-Taghi Ameli
Publication date
06-02-2023
Publisher
Springer Berlin Heidelberg
Published in
Electrical Engineering
Print ISSN: 0948-7921
Electronic ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-023-01753-2