Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 10/2021

08-04-2021 | Research Article-Electrical Engineering

A Novel Pseudo-Taylor-Exponential Approximation Technique for Input–Output Range Extension with Reduced Linearity Error and its Current-Mode CMOS Implementation

Authors: Pushkar Srivastava, R. K. Sharma

Published in: Arabian Journal for Science and Engineering | Issue 10/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A novel mathematical approach has been proposed for input–output range extension of Pseudo-Taylor-Exponential-Approximation (PTEA) for achieving over seven-decade exponential function, while reducing the linearity error by 1 dB and attaining simple coefficients such as to realize this technique in designing the MOSFET based circuit. This new MPTEA technique, has been successfully utilized for its current-mode (I-I) CMOS implementation involving translinear principle of MOSFETs in weak inversion (WI) region. The CMOS synthesis procedure has been detailed and relevant second-order effects consists of noise, bulk-effect etc. have been explored. For post-layout simulations of the synthesized CMOS implementation, the SPECTRE simulation tool from Cadence, with 180 nM CMOS parameters, has been utilized to justify its practical workability. The proposition, in its CMOS layout, occupies an area of 0.0126mm2 only. It consumes only ≈4.92 μW static power by utilizing ± 0.65 V power supply and produces 146.5 dB range of linear-in-dB output with ± 1 dB linearity error.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Abdelfattah, K.M.; Soliman, A.M.: A Novel exponential voltage-to-current converter. CSSP. 21(5), 473–483 (2020)MATH Abdelfattah, K.M.; Soliman, A.M.: A Novel exponential voltage-to-current converter. CSSP. 21(5), 473–483 (2020)MATH
2.
go back to reference Abuelma’Atti, M.T.; Faris, O.O.: A current-mode exponential-difference circuit. Frequenz. 57, 116–118 (2003) Abuelma’Atti, M.T.; Faris, O.O.: A current-mode exponential-difference circuit. Frequenz. 57, 116–118 (2003)
3.
go back to reference Akbar, M.; Biabanifard, S.; Asadi, S.: Input referred noise reduction technique for transconductance amplifiers. ECIJ. 4(4), 11–22 (2015) Akbar, M.; Biabanifard, S.; Asadi, S.: Input referred noise reduction technique for transconductance amplifiers. ECIJ. 4(4), 11–22 (2015)
4.
go back to reference Al-Tamimi, K.M.; Al-Absi, M.A.: A 6.13μW and 96dB CMOS exponential generator. IEEE Trans. Very large Scale Integr (VLSI) Syst. 22(11), 2440–2445 (2014) Al-Tamimi, K.M.; Al-Absi, M.A.: A 6.13μW and 96dB CMOS exponential generator. IEEE Trans. Very large Scale Integr (VLSI) Syst. 22(11), 2440–2445 (2014)
5.
go back to reference Al-Tamimi, K.M.; MA AL-Absi, MT Abuelmaatti, : Temperature insensitive current-mode CMOS exponential function generator and its application in variable gain amplifier. Microelectron. J. 45, 345–354 (2014) Al-Tamimi, K.M.; MA AL-Absi, MT Abuelmaatti, : Temperature insensitive current-mode CMOS exponential function generator and its application in variable gain amplifier. Microelectron. J. 45, 345–354 (2014)
6.
go back to reference Arthansiri, T.; Kasemsuwan, V.: Current-mode pseudo-exponential-control variable-gain amplifier using fourth-order Taylor’s series approximation. Electron. Lett. 42(7), 379–380 (2006) Arthansiri, T.; Kasemsuwan, V.: Current-mode pseudo-exponential-control variable-gain amplifier using fourth-order Taylor’s series approximation. Electron. Lett. 42(7), 379–380 (2006)
7.
go back to reference Barham, R.A.: A Temperature compensated exponential function. IEEE J. Solid-State Circuits. 3(1), 34–35 (1968)MathSciNet Barham, R.A.: A Temperature compensated exponential function. IEEE J. Solid-State Circuits. 3(1), 34–35 (1968)MathSciNet
8.
go back to reference Bhanja, M.; Ray, B.N.: OTA-based logarithmic circuit for arbitrary input signal and its application. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 24(2), 638–649 (2016) Bhanja, M.; Ray, B.N.: OTA-based logarithmic circuit for arbitrary input signal and its application. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 24(2), 638–649 (2016)
9.
go back to reference Binkley, D.M.: Tradeoffs and optimization in analog CMOS design. Wiley, Chichester (2007) Binkley, D.M.: Tradeoffs and optimization in analog CMOS design. Wiley, Chichester (2007)
10.
go back to reference Carrara, F.; Filoramo, O.; Palmisano, G.: High-dynamic-range variable gain amplifier with temperature compensation and linear-in-decibel gain control. Electron. Letter. 40(6), 363–364 (2004) Carrara, F.; Filoramo, O.; Palmisano, G.: High-dynamic-range variable gain amplifier with temperature compensation and linear-in-decibel gain control. Electron. Letter. 40(6), 363–364 (2004)
11.
go back to reference Chang, C.C.; Lin, M.L.; Liu, S.I.: CMOS current-mode exponential control variable-gain-amplifier. Electron. Letter. 37(14), 868–869 (2001) Chang, C.C.; Lin, M.L.; Liu, S.I.: CMOS current-mode exponential control variable-gain-amplifier. Electron. Letter. 37(14), 868–869 (2001)
12.
go back to reference Chang, C.C.; Liu, S.I.: Current-mode pseudo-exponential circuit with tunable input range. Electron. Letter. 36(16), 1335–1336 (2000) Chang, C.C.; Liu, S.I.: Current-mode pseudo-exponential circuit with tunable input range. Electron. Letter. 36(16), 1335–1336 (2000)
13.
go back to reference Chang, C.C.; Liu, S.I.: Pseudo-exponential function for MOSFETs in saturation. IEEE Trans Circuits Syst-II Analog Digital Signal Process. 47(11), 1318–1321 (2000) Chang, C.C.; Liu, S.I.: Pseudo-exponential function for MOSFETs in saturation. IEEE Trans Circuits Syst-II Analog Digital Signal Process. 47(11), 1318–1321 (2000)
14.
go back to reference Choi, I.; Seo, H.; Kim, B.: Accurate dB-linear variable gain amplifier with gain error compensation. IEEE J. Solid-State Circuits. 48(2), 456–464 (2013) Choi, I.; Seo, H.; Kim, B.: Accurate dB-linear variable gain amplifier with gain error compensation. IEEE J. Solid-State Circuits. 48(2), 456–464 (2013)
15.
go back to reference De La Cruz Blas, C.A.; López-Martín, A.: Novel low-power High-dB Range CMOS Pseudo-Exponential Cells. ETRI J. 28(6), 732–738 (2006) De La Cruz Blas, C.A.; López-Martín, A.: Novel low-power High-dB Range CMOS Pseudo-Exponential Cells. ETRI J. 28(6), 732–738 (2006)
16.
go back to reference Enz, C.; Chicco, F.; Pezzotta, A.: Nanoscale MOSFET modeling. IEEE Solid-State Circuit Mag. 3(9), 26–35 (2017) Enz, C.; Chicco, F.; Pezzotta, A.: Nanoscale MOSFET modeling. IEEE Solid-State Circuit Mag. 3(9), 26–35 (2017)
17.
go back to reference Fares, O.O.: Configurable analog building blocks for field programmable analog array. King Fahd University, Dhahran (2004) Fares, O.O.: Configurable analog building blocks for field programmable analog array. King Fahd University, Dhahran (2004)
18.
go back to reference Ferreira, L.H.C.; Sonkusale, S.R.: A 60-dB gain OTA operating at 0.25-V power supply in 130-nm digital CMOS process. IEEE Trans. Circuits Syst.-I: Regul. Pap. 61(6), 1609–1617 (2015) Ferreira, L.H.C.; Sonkusale, S.R.: A 60-dB gain OTA operating at 0.25-V power supply in 130-nm digital CMOS process. IEEE Trans. Circuits Syst.-I: Regul. Pap. 61(6), 1609–1617 (2015)
19.
go back to reference Ghanavati, B.; Abiri, E.; Salehi, M.R.: A High-accurate exponential function generator based on a new pseudo-approximation method by TLBO optimization algorithm. CSSP. 37(4), 1407–1421 (2017)MathSciNet Ghanavati, B.; Abiri, E.; Salehi, M.R.: A High-accurate exponential function generator based on a new pseudo-approximation method by TLBO optimization algorithm. CSSP. 37(4), 1407–1421 (2017)MathSciNet
20.
go back to reference Ginstrup, O.: A exponential current generator. IEEE Trans on Instrum Meas. 22(3), 222–225 (1973) Ginstrup, O.: A exponential current generator. IEEE Trans on Instrum Meas. 22(3), 222–225 (1973)
21.
go back to reference Gupta, M.; Pandey, R.: Low-voltage FGMOS based analog building blocks. Microelectron. J. 42(6), 903–912 (2011) Gupta, M.; Pandey, R.: Low-voltage FGMOS based analog building blocks. Microelectron. J. 42(6), 903–912 (2011)
22.
go back to reference Hang, L.: Design of variable gain amplifier in CMOS technology. Nanyang Technological University, Singapore (2015) Hang, L.: Design of variable gain amplifier in CMOS technology. Nanyang Technological University, Singapore (2015)
23.
go back to reference Harrison, R.R.; Charles, C.: A Low-noise CMOS amplifier for neural recording applications. IEEE J. Solid-State Circuits 38(6), 958–965 (2003) Harrison, R.R.; Charles, C.: A Low-noise CMOS amplifier for neural recording applications. IEEE J. Solid-State Circuits 38(6), 958–965 (2003)
26.
go back to reference Kalenteridis, V.; Vlassis, S.; Siskos, S.: 1.5-V CMOS exponential current generator. Analog Integr. Circuits Signal Process. 72(2), 333–341 (2012) Kalenteridis, V.; Vlassis, S.; Siskos, S.: 1.5-V CMOS exponential current generator. Analog Integr. Circuits Signal Process. 72(2), 333–341 (2012)
27.
go back to reference Kao, C.H.; Lin, W.P.; Hsieh, C.S.: Low-voltage low-power current mode exponential circuit. IEE Proc. Circuits. Devices Syst. 3, 633–635 (2005) Kao, C.H.; Lin, W.P.; Hsieh, C.S.: Low-voltage low-power current mode exponential circuit. IEE Proc. Circuits. Devices Syst. 3, 633–635 (2005)
28.
go back to reference Karanjakar, N.V.; Sahoo, R.R.; Baghini, M.S.: Comments on Improved accuracy pseudo-exponential function generator with applications in analog signal Processing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 18(9), 1381–1383 (2010) Karanjakar, N.V.; Sahoo, R.R.; Baghini, M.S.: Comments on Improved accuracy pseudo-exponential function generator with applications in analog signal Processing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 18(9), 1381–1383 (2010)
29.
go back to reference Karimi, Y.; Abrishamifar, A. (2011) A low power configurable analogue block. In Proceedings 19th ICEE. 1–5 Karimi, Y.; Abrishamifar, A. (2011) A low power configurable analogue block. In Proceedings 19th ICEE. 1–5
30.
go back to reference Liu, H.; Zhu, X.; Boon, C.C.; He, X.: Cell-Cell-Based Variable-Gain Amplifiers with Accurate dB-Linear Characteristic in 018 μm CMOS Technology. IEEE J. Solid-State Circuits 50(2), 1–11 (2015) Liu, H.; Zhu, X.; Boon, C.C.; He, X.: Cell-Cell-Based Variable-Gain Amplifiers with Accurate dB-Linear Characteristic in 018 μm CMOS Technology. IEEE J. Solid-State Circuits 50(2), 1–11 (2015)
31.
go back to reference Liu, W.; Chang, C.C.; Liu, S.I.: Realisation of exponential VI converter using composite NMOS transistors. Electronics Letter. 36(1), 8–10 (2000) Liu, W.; Chang, C.C.; Liu, S.I.: Realisation of exponential VI converter using composite NMOS transistors. Electronics Letter. 36(1), 8–10 (2000)
32.
go back to reference Liu, W.; Liu, S.I.: CMOS exponential function generator. Electron. Lett. 39(1), 1–2 (2003) Liu, W.; Liu, S.I.: CMOS exponential function generator. Electron. Lett. 39(1), 1–2 (2003)
33.
go back to reference Liu, W.; Liu, S.I.; Wei, S.K.: CMOS Differential-Mode Exponential Voltage-To-Current Converter. AICSP. 45, 163–168 (2005) Liu, W.; Liu, S.I.; Wei, S.K.: CMOS Differential-Mode Exponential Voltage-To-Current Converter. AICSP. 45, 163–168 (2005)
34.
go back to reference Lundberg, K.H. (2012) Survey of Noise Sources in Bulk CMOS. MIT. 1–12 Lundberg, K.H. (2012) Survey of Noise Sources in Bulk CMOS. MIT. 1–12
35.
go back to reference Maundy, B.; Gift, S.: Novel Pseudo-Exponential Circuits. IEEE Trans. Circuits Syst.-Ii: Express Briefs. 52(10), 675–679 (2005) Maundy, B.; Gift, S.: Novel Pseudo-Exponential Circuits. IEEE Trans. Circuits Syst.-Ii: Express Briefs. 52(10), 675–679 (2005)
36.
go back to reference Minch, B.: Synthesis of static and dynamic multiple-input translinear element networks. IEEE Trans On Circuits and Syst-I, Reg Papers 51(2), 409–421 (2004)MathSciNetMATH Minch, B.: Synthesis of static and dynamic multiple-input translinear element networks. IEEE Trans On Circuits and Syst-I, Reg Papers 51(2), 409–421 (2004)MathSciNetMATH
37.
go back to reference Motamed, A.; Hwang, C.; Ismail, M.: CMOS exponential current-to-voltage converter. Electron. Letter. 33(12), 998–1000 (1997) Motamed, A.; Hwang, C.; Ismail, M.: CMOS exponential current-to-voltage converter. Electron. Letter. 33(12), 998–1000 (1997)
38.
go back to reference Motamed, A.; Hwang, C.; Ismail, M.: A low-voltage low-power wide-range CMOS variable gain amplifier. IEEE Trans. Circuits Syst.-II Analog Digital Signal Process. 45(7), 800–811 (1998) Motamed, A.; Hwang, C.; Ismail, M.: A low-voltage low-power wide-range CMOS variable gain amplifier. IEEE Trans. Circuits Syst.-II Analog Digital Signal Process. 45(7), 800–811 (1998)
39.
go back to reference Popa, C.R.: Improved Accuracy Pseudo-Exponential Function Generator with Applications in Analog Signal Processing. IEEE Trans. Very Large Scale Integr. VLSI Syst. 16(3), 318–321 (2008) Popa, C.R.: Improved Accuracy Pseudo-Exponential Function Generator with Applications in Analog Signal Processing. IEEE Trans. Very Large Scale Integr. VLSI Syst. 16(3), 318–321 (2008)
40.
go back to reference Popa, C.R.: Synthesis of Computational Structures for Analog Signal Processing. Springer, NewYork (2011)MATH Popa, C.R.: Synthesis of Computational Structures for Analog Signal Processing. Springer, NewYork (2011)MATH
41.
go back to reference Popa, C.R.: Pseudo-Exponential Computational Circuit with Improved Accuracy and Frequency Response. MIPRO, 2012 Proceedings of the 35th International Convention. 89–92 (2012) Popa, C.R.: Pseudo-Exponential Computational Circuit with Improved Accuracy and Frequency Response. MIPRO, 2012 Proceedings of the 35th International Convention. 89–92 (2012)
42.
go back to reference Popa, C.R.: Low-voltage CMOS current-mode exponential circuit with 70dB output dynamic range. Microelectron. J. 44, 1348–1357 (2013) Popa, C.R.: Low-voltage CMOS current-mode exponential circuit with 70dB output dynamic range. Microelectron. J. 44, 1348–1357 (2013)
43.
go back to reference Popa, C.R.: High output dynamic range exponential function synthesizer. Microelectron. J. 63, 123–130 (2017) Popa, C.R.: High output dynamic range exponential function synthesizer. Microelectron. J. 63, 123–130 (2017)
44.
go back to reference Rajput, S.S.; Jamuar, S.: Low Voltage Analog Circuit Design Techniques. IEEE Circuits Syst Mag. 2(1), 24–42 (2002) Rajput, S.S.; Jamuar, S.: Low Voltage Analog Circuit Design Techniques. IEEE Circuits Syst Mag. 2(1), 24–42 (2002)
45.
go back to reference Ray, S.; Hella, M.M.: Switching architecture for CMOS exponential function generators eliminating squarer/multiplier circuits. Electronics Letter. 50(4), 258–260 (2014) Ray, S.; Hella, M.M.: Switching architecture for CMOS exponential function generators eliminating squarer/multiplier circuits. Electronics Letter. 50(4), 258–260 (2014)
46.
go back to reference Ray, S.; Hella, M.M.: A 10 Gb/s Inductorless AGC Amplifier with 40 dB Linear Variable Gain Control in 0.13 μm CMOS. IEEE J. Solid-State Circuits. 51(2), 440–456 (2016) Ray, S.; Hella, M.M.: A 10 Gb/s Inductorless AGC Amplifier with 40 dB Linear Variable Gain Control in 0.13 μm CMOS. IEEE J. Solid-State Circuits. 51(2), 440–456 (2016)
47.
go back to reference Saatlo, A.N.; Ozoguz, S. (2011) A New CMOS Exponential Circuit with Extended Linear Output Range. 20th European Conference on Circuit Theory and Design, 893–896 Saatlo, A.N.; Ozoguz, S. (2011) A New CMOS Exponential Circuit with Extended Linear Output Range. 20th European Conference on Circuit Theory and Design, 893–896
49.
go back to reference Sansen, W.M.C.: Noise sources in a MOSFET transistor, p. 1–11. NIKHEF, Amsterdam (1999) Sansen, W.M.C.: Noise sources in a MOSFET transistor, p. 1–11. NIKHEF, Amsterdam (1999)
50.
go back to reference Seevinck, E.; Wiegerink, R.: Generalized translinear circuit principle. IEEE J. Solid-State Circuits. 26(8), 1098–1102 (1991) Seevinck, E.; Wiegerink, R.: Generalized translinear circuit principle. IEEE J. Solid-State Circuits. 26(8), 1098–1102 (1991)
51.
go back to reference Senani, R.; Bhaskar, D.R.; Singh, V.K.; Sharma, R.K.: Chapter-9 of sinusoidal oscillators and waveform generators using modern electronic circuit building blocks. Springer, Cham (2016) Senani, R.; Bhaskar, D.R.; Singh, V.K.; Sharma, R.K.: Chapter-9 of sinusoidal oscillators and waveform generators using modern electronic circuit building blocks. Springer, Cham (2016)
52.
go back to reference Srivastava, P.; Sharma, R.K.: A novel exponential approximation with ±0.21 dB error for realizing an improved CMOS exponential function generator. CSSP. 36(7), 2941–2957 (2017) Srivastava, P.; Sharma, R.K.: A novel exponential approximation with ±0.21 dB error for realizing an improved CMOS exponential function generator. CSSP. 36(7), 2941–2957 (2017)
53.
go back to reference Vlassis, S.: CMOS current-mode pseudo-exponential function circuit. Electron. Letter. 37(8), 471–472 (2001) Vlassis, S.: CMOS current-mode pseudo-exponential function circuit. Electron. Letter. 37(8), 471–472 (2001)
54.
go back to reference Al-Absi, M.A.: A New Highly Accurate CMOS Current-Mode Four-Quadrant Multiplier. Arab J. Sci Eng 40(51), 551–558 (2014) Al-Absi, M.A.: A New Highly Accurate CMOS Current-Mode Four-Quadrant Multiplier. Arab J. Sci Eng 40(51), 551–558 (2014)
55.
go back to reference Abuelma’atti, M.T. : Recent Developments in Current-Mode Sinusoidal Oscillators: Circuits and Active Elements. Arab J Sci Eng 42, 2583–2614 (2016)MathSciNetMATH Abuelma’atti, M.T. : Recent Developments in Current-Mode Sinusoidal Oscillators: Circuits and Active Elements. Arab J Sci Eng 42, 2583–2614 (2016)MathSciNetMATH
Metadata
Title
A Novel Pseudo-Taylor-Exponential Approximation Technique for Input–Output Range Extension with Reduced Linearity Error and its Current-Mode CMOS Implementation
Authors
Pushkar Srivastava
R. K. Sharma
Publication date
08-04-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 10/2021
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-05495-w

Other articles of this Issue 10/2021

Arabian Journal for Science and Engineering 10/2021 Go to the issue

Research Article-Electrical Engineering

Fully Improved Quadrature Spatial Modulation

Research Article-Electrical Engineering

Hardware Architecture Exploration for Deep Neural Networks

Premium Partners