Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 14/2021

18-08-2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

A Novel Refractory High Entropy Alloy CrHfNbZrTa0.5: Phase Analysis, Microstructure, and Compressive Properties

Authors: J. J. Yi, L. Wang, L. Yang, M. Q. Xu

Published in: Physics of Metals and Metallography | Issue 14/2021

Login to get access
share
SHARE

Abstract

A new refractory alloy, CrHfNbZrTa0.5, was prepared by a vacuum arc-melting, and its phase analysis, microstructures, and compressive properties in as-cast and annealed conditions were investigated. The phase components of the as-cast CrHfNbZrTa0.5 alloy were mainly composed of BCC + Laves phases, while an extra HCP phase emerged after annealing. The yield strength of the as-cast and annealed alloys were 1457 and 1517 MPa respectively, both which are significantly larger than 929 MPa of the most concerned HfNbTaTiZr. The relatively stable high-strength of the as-cast and annealed alloys might originate from the high ductility-brittle temperature and the intrinsic strength of the Cr-containing Laves phase.
Literature
1.
go back to reference O. N. Senkov and C.F. Woodward, “Microstructure and properties of a refractory NbCrMo 0.5Ta 0.5TiZr alloy,” Mater. Sci. Eng., A 529, 311–320 (2011). CrossRef O. N. Senkov and C.F. Woodward, “Microstructure and properties of a refractory NbCrMo 0.5Ta 0.5TiZr alloy,” Mater. Sci. Eng., A 529, 311–320 (2011). CrossRef
2.
go back to reference É. Fazakas, V. Zadorozhnyy, L. K. Varga, A. Inoue, D. V. Louzguine-Luzgin, F. Tian, and L. Vitos, “Experimental and theoretical study of Ti 20Zr 20Hf 20Nb 20X 20 (X = V or Cr) refractory high-entropy alloys,” Int. J. Refract. Met. Hard Mater. 47, 131–138 (2014). CrossRef É. Fazakas, V. Zadorozhnyy, L. K. Varga, A. Inoue, D. V. Louzguine-Luzgin, F. Tian, and L. Vitos, “Experimental and theoretical study of Ti 20Zr 20Hf 20Nb 20X 20 (X = V or Cr) refractory high-entropy alloys,” Int. J. Refract. Met. Hard Mater. 47, 131–138 (2014). CrossRef
3.
go back to reference G. Dirras, L. Lilensten, P. Djemia, M. Laurent-Brocq, D. Tingaud, J. P. Couzinie, L. Perriere, T. Chauveau, and I. Guillot, “Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy,” Mater. Sci. Eng., A 654, 30–38 (2016). CrossRef G. Dirras, L. Lilensten, P. Djemia, M. Laurent-Brocq, D. Tingaud, J. P. Couzinie, L. Perriere, T. Chauveau, and I. Guillot, “Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy,” Mater. Sci. Eng., A 654, 30–38 (2016). CrossRef
4.
go back to reference S. Maiti and W. Steurer, “Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy,” Acta Mater. 106, 87–97 (2016). CrossRef S. Maiti and W. Steurer, “Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy,” Acta Mater. 106, 87–97 (2016). CrossRef
5.
go back to reference V. Soni, O. N. Senkov, B. Gwalani, D. B. Miracle, and R. Banerjee, “Microstructural design for improving ductility of an initially brittle refractory high entropy alloy,” Sci. Rep. 8, 8816 (2018). CrossRef V. Soni, O. N. Senkov, B. Gwalani, D. B. Miracle, and R. Banerjee, “Microstructural design for improving ductility of an initially brittle refractory high entropy alloy,” Sci. Rep. 8, 8816 (2018). CrossRef
6.
go back to reference N. N. Guo, L. Wang, L.S. Luo, X. Z. Li, R. R. Chen, Y. Q. Su, J. J. Guo, and H. Z. Fu, “Microstructure and mechanical properties of in-situ MC-carbide particulates-reinforced refractory high-entropy Mo 0.5NbHf 0.5ZrTi matrix alloy composite,” Intermetallics 69, 74–77 (2016). CrossRef N. N. Guo, L. Wang, L.S. Luo, X. Z. Li, R. R. Chen, Y. Q. Su, J. J. Guo, and H. Z. Fu, “Microstructure and mechanical properties of in-situ MC-carbide particulates-reinforced refractory high-entropy Mo 0.5NbHf 0.5ZrTi matrix alloy composite,” Intermetallics 69, 74–77 (2016). CrossRef
7.
go back to reference O. N. Senkov, G. B. Wilks, J. M. Scott, and D. B. Miracle, “Mechanical properties of Nb 25Mo 25Ta 25W 25 and V 20Nb 20Mo 20Ta 20W 20 refractory high entropy alloys,” Intermetallics 19, 698–706 (2011). CrossRef O. N. Senkov, G. B. Wilks, J. M. Scott, and D. B. Miracle, “Mechanical properties of Nb 25Mo 25Ta 25W 25 and V 20Nb 20Mo 20Ta 20W 20 refractory high entropy alloys,” Intermetallics 19, 698–706 (2011). CrossRef
8.
go back to reference K. C. Lo, H. Murakami, J. W. Yeh, and A. C. Yeh, “Oxidation behavior of a novel refractory high entropy alloy at elevated temperatures,” Intermetallics 119, 106711 (2020). CrossRef K. C. Lo, H. Murakami, J. W. Yeh, and A. C. Yeh, “Oxidation behavior of a novel refractory high entropy alloy at elevated temperatures,” Intermetallics 119, 106711 (2020). CrossRef
9.
go back to reference B. Gorr, F. Müller, M. Azim, H. J. Christ, T. Müller, H. Chen, A. Kauffmann, and M. Heilmaier, “High-temperature oxidation behavior of refractory high-entropy alloys: effect of alloy composition,” Oxid. Met. 88, 339–349 (2017). CrossRef B. Gorr, F. Müller, M. Azim, H. J. Christ, T. Müller, H. Chen, A. Kauffmann, and M. Heilmaier, “High-temperature oxidation behavior of refractory high-entropy alloys: effect of alloy composition,” Oxid. Met. 88, 339–349 (2017). CrossRef
10.
go back to reference O. A. Waseem, J. Lee, H. M. Lee, and H. J. Ryu, “The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy Ti xWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials,” Mater. Chem. Phys. 210, 87–94 (2018). CrossRef O. A. Waseem, J. Lee, H. M. Lee, and H. J. Ryu, “The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy Ti xWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials,” Mater. Chem. Phys. 210, 87–94 (2018). CrossRef
11.
go back to reference Z. D. Han, H. W. Luan, X. Liu, N. Chen, X. Y. Li, Y. Shao, and K. F. Yao, “Microstructures and mechanical properties of TiNbMoTaW refractory high-entropy alloys,” Mater. Sci. Eng., A 712, 380–385 (2018). CrossRef Z. D. Han, H. W. Luan, X. Liu, N. Chen, X. Y. Li, Y. Shao, and K. F. Yao, “Microstructures and mechanical properties of TiNbMoTaW refractory high-entropy alloys,” Mater. Sci. Eng., A 712, 380–385 (2018). CrossRef
12.
go back to reference A. Poulia, E. Georgatis, A. Lekatou, and A. Karantzalis, “Dry-sliding wear response of MoTaWNbV high entropy alloy,” Adv. Eng. Mater. 19, 1600535 (2017). CrossRef A. Poulia, E. Georgatis, A. Lekatou, and A. Karantzalis, “Dry-sliding wear response of MoTaWNbV high entropy alloy,” Adv. Eng. Mater. 19, 1600535 (2017). CrossRef
13.
go back to reference O. N. Senkov, D. B. Miracle, K. J. Chaput, and J. P. Couzinie, “Development and exploration of refractory high entropy alloys—A review,” J. Mater. Res. 33, 3092–3128 (2018). CrossRef O. N. Senkov, D. B. Miracle, K. J. Chaput, and J. P. Couzinie, “Development and exploration of refractory high entropy alloys—A review,” J. Mater. Res. 33, 3092–3128 (2018). CrossRef
14.
go back to reference O. N. Senkov, J. M. Scott, S. V. Senkova, D. B. Miracle, and C. F. Woodward, “Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy,” J. Alloys Compd. 509, 6043–6048 (2011). CrossRef O. N. Senkov, J. M. Scott, S. V. Senkova, D. B. Miracle, and C. F. Woodward, “Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy,” J. Alloys Compd. 509, 6043–6048 (2011). CrossRef
15.
go back to reference O. N. Senkov, J. M. Scott, S. V. Senkova, F. Meisenkothen, D. B. Miracle, and C. F. Woodward, “Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy,” J. Mater. Sci. 47, 4062–4074 (2012). CrossRef O. N. Senkov, J. M. Scott, S. V. Senkova, F. Meisenkothen, D. B. Miracle, and C. F. Woodward, “Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy,” J. Mater. Sci. 47, 4062–4074 (2012). CrossRef
16.
go back to reference O. N. Senkov and S. L. Semiatin, “Microstructure and properties of a refractory high-entropy alloy after cold working,” J. Alloys Compd. 649, 1110–1123 (2015). CrossRef O. N. Senkov and S. L. Semiatin, “Microstructure and properties of a refractory high-entropy alloy after cold working,” J. Alloys Compd. 649, 1110–1123 (2015). CrossRef
17.
go back to reference Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R. O. Ritchie, and Q. Yu, “Tuning element distribution, structure and properties by composition in high-entropy alloys,” Nature 574, 223–227 (2019). CrossRef Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R. O. Ritchie, and Q. Yu, “Tuning element distribution, structure and properties by composition in high-entropy alloys,” Nature 574, 223–227 (2019). CrossRef
18.
go back to reference O. N. Senkov, S. V. Senkova, and C. Woodward, “Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys,” Acta Mater. 68, 214–228 (2014). CrossRef O. N. Senkov, S. V. Senkova, and C. Woodward, “Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys,” Acta Mater. 68, 214–228 (2014). CrossRef
19.
go back to reference C. M. Lin, C. C. Juan, C. H. Chang, C. W. Tsai, and J. W. Yeh, “Effect of Al addition on mechanical properties and microstructure of refractory Al xHfNbTaTiZr alloys,” J. Alloys Compd. 624, 100–107 (2015). CrossRef C. M. Lin, C. C. Juan, C. H. Chang, C. W. Tsai, and J. W. Yeh, “Effect of Al addition on mechanical properties and microstructure of refractory Al xHfNbTaTiZr alloys,” J. Alloys Compd. 624, 100–107 (2015). CrossRef
20.
go back to reference C. C. Juan, M. H. Tsai, C. W. Tsai, C. M. Lin, W. R. Wang, C. C. Yang, S. K. Chen, S. J. Lin, J. and W. Yeh, “Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys,” Intermetallics 62, 76–83 (2015). CrossRef C. C. Juan, M. H. Tsai, C. W. Tsai, C. M. Lin, W. R. Wang, C. C. Yang, S. K. Chen, S. J. Lin, J. and W. Yeh, “Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys,” Intermetallics 62, 76–83 (2015). CrossRef
21.
go back to reference I. I. Gorbachev, V. V. Popov, A. Katz-Demyanetz, V. Popov, and E. Eshed, “Prediction of the phase composition of high-entropy alloys based on Cr–Nb–Ti–V–Zr using the Calphad method,” Phys. Met. Metallogr. 120, 378–386 (2019). CrossRef I. I. Gorbachev, V. V. Popov, A. Katz-Demyanetz, V. Popov, and E. Eshed, “Prediction of the phase composition of high-entropy alloys based on Cr–Nb–Ti–V–Zr using the Calphad method,” Phys. Met. Metallogr. 120, 378–386 (2019). CrossRef
22.
go back to reference J. Yi, S. Tang, M. Xu, L. Yang, L. Wang, and L. Zeng, “A novel Al 0.5CrCuNiV 3D transition metal high-entropy alloy: Phase analysis, microstructure and compressive properties,” J. Alloys Compd. 846, 156466 (2020). CrossRef J. Yi, S. Tang, M. Xu, L. Yang, L. Wang, and L. Zeng, “A novel Al 0.5CrCuNiV 3D transition metal high-entropy alloy: Phase analysis, microstructure and compressive properties,” J. Alloys Compd. 846, 156466 (2020). CrossRef
23.
go back to reference S. Guo and C. T. Liu, “Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase,” Prog. Nat. Sci.: Mater. Int. 21, 433–446 (2011). CrossRef S. Guo and C. T. Liu, “Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase,” Prog. Nat. Sci.: Mater. Int. 21, 433–446 (2011). CrossRef
24.
go back to reference X. Yang and Y. Zhang, “Prediction of high-entropy stabilized solid-solution in multi-component alloys,” Mater. Chem. Phys. 132, 233–238 (2012). CrossRef X. Yang and Y. Zhang, “Prediction of high-entropy stabilized solid-solution in multi-component alloys,” Mater. Chem. Phys. 132, 233–238 (2012). CrossRef
25.
go back to reference M. Zhang, X. Zhou, and J. Li, “Microstructure and mechanical properties of a refractory CoCrMoNbTi high-entropy alloy,” J. Mater. Eng. Perform. 26, 3657–3665 (2017). CrossRef M. Zhang, X. Zhou, and J. Li, “Microstructure and mechanical properties of a refractory CoCrMoNbTi high-entropy alloy,” J. Mater. Eng. Perform. 26, 3657–3665 (2017). CrossRef
26.
go back to reference A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys,” Acta Mater. 48, 279–306 (2000). CrossRef A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys,” Acta Mater. 48, 279–306 (2000). CrossRef
27.
go back to reference O. N. Senkov, C. Zhang, A. L. Pilchak, E. J. Payton, C. Woodward, and F. Zhang, “CALPHAD-aided development of quaternary multi-principal element refractory alloys based on NbTiZr,” J. Alloys Compd. 783, 729–742 (2019). CrossRef O. N. Senkov, C. Zhang, A. L. Pilchak, E. J. Payton, C. Woodward, and F. Zhang, “CALPHAD-aided development of quaternary multi-principal element refractory alloys based on NbTiZr,” J. Alloys Compd. 783, 729–742 (2019). CrossRef
28.
go back to reference J. Pi, P. Ye, Z. Hui, and Z. Lu, “Microstructure and properties of AlCrFeCuNi x (0.6 ≤ x ≤ 1.4) high-entropy alloys,” Mater. Sci. Eng., A 534, 228–233 (2012). CrossRef J. Pi, P. Ye, Z. Hui, and Z. Lu, “Microstructure and properties of AlCrFeCuNi x (0.6 ≤ x ≤ 1.4) high-entropy alloys,” Mater. Sci. Eng., A 534, 228–233 (2012). CrossRef
29.
go back to reference T. Takasugi, M. Yoshida, and S. Hanada, “Deformability improvement in C 15NbCr 2 intermetallics by addition of ternary elements,” Acta Mater. 44, 669–674 (1996). CrossRef T. Takasugi, M. Yoshida, and S. Hanada, “Deformability improvement in C 15NbCr 2 intermetallics by addition of ternary elements,” Acta Mater. 44, 669–674 (1996). CrossRef
Metadata
Title
A Novel Refractory High Entropy Alloy CrHfNbZrTa0.5: Phase Analysis, Microstructure, and Compressive Properties
Authors
J. J. Yi
L. Wang
L. Yang
M. Q. Xu
Publication date
18-08-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 14/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21140179