Skip to main content
Top
Published in:

01-12-2023

A Novel Regularized Extreme Learning Machine Based on \(L_{1}\)-Norm and \(L_{2}\)-Norm: a Sparsity Solution Alternative to Lasso and Elastic Net

Authors: Hasan Yıldırım, M. Revan Özkale

Published in: Cognitive Computation | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The aim of this study is to present a new regularized extreme learning machine (ELM) algorithm that can perform variable selection based on the simultaneous use of both ridge and Liu regressions in order to cope with some disadvantages of ELM and its variants such as instability and poor generalization performance and lack of sparsity. The proposed algorithm was compared with the classical ELM as well as the variants based on ridge, Liu, Lasso and Elastic Net approaches by cross-validation process and best tuning parameter over seven different real-world applications and their performances were presented comparatively. The proposed algorithm outperformed ridge, Lasso and Elastic Net algorithms in training performance prediction (average 40%) and stability (average 80%) and in test performance prediction (average 20%) and stability (60%) in the majority of the data. In addition, the proposed ELM was found to be more compact (better sparsity capability) with lower norm values. The results confirmed that the proposed ELM presents more stable and sparse solutions with better generalization performance than any other algorithm under favorable conditions. The findings based on experimental study via real-world applications indicate that the proposed ELM provides effective solutions to the mentioned drawbacks and yields more stable and sparse performance with better generalization capability than its competitors. Consequently, the proposed algorithm represents a powerful alternative both regression and classification tasks in machine learning field due to its theoretical flexibility.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Huang GB, Zhu QY, Siew CK. Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541) (Vol. 2). IEEE; 2004. p. 985–90. Huang GB, Zhu QY, Siew CK. Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541) (Vol. 2). IEEE; 2004. p. 985–90.
2.
go back to reference Huang GB, Zhu QY, Siew CK. Extreme learning machine: Theory and applications. Neurocomputing. 2006;70(1–3):489–501.CrossRef Huang GB, Zhu QY, Siew CK. Extreme learning machine: Theory and applications. Neurocomputing. 2006;70(1–3):489–501.CrossRef
3.
go back to reference Huang GB, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybernet B (Cybernet). 2011;42(2):513–29. Huang GB, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybernet B (Cybernet). 2011;42(2):513–29.
4.
go back to reference Hoerl AE, Kennard RW. Ridge regression: Applications to nonorthogonal problems. Technometrics. 1970;12(1):69–82.CrossRef Hoerl AE, Kennard RW. Ridge regression: Applications to nonorthogonal problems. Technometrics. 1970;12(1):69–82.CrossRef
5.
go back to reference Deng W, Zheng Q, Chen L. Regularized extreme learning machine. In: 2009 IEEE Symposium on Computational Intelligence and Data Mining. IEEE; 2009. p. 389–95 Deng W, Zheng Q, Chen L. Regularized extreme learning machine. In: 2009 IEEE Symposium on Computational Intelligence and Data Mining. IEEE; 2009. p. 389–95
6.
go back to reference Li G, Niu P. An enhanced extreme learning machine based on ridge regression for regression. Neural Comput Appl. 2013;22:803–10.CrossRef Li G, Niu P. An enhanced extreme learning machine based on ridge regression for regression. Neural Comput Appl. 2013;22:803–10.CrossRef
7.
go back to reference Huang WB, Sun FC. Building feature space of extreme learning machine with sparse denoising stacked-autoencoder. Neurocomputing. 2016;22(174):60–71. Huang WB, Sun FC. Building feature space of extreme learning machine with sparse denoising stacked-autoencoder. Neurocomputing. 2016;22(174):60–71.
8.
go back to reference Shao Z, Er MJ. Efficient leave-one-out cross-validation-basedregularized extreme learning machine. Neurocomputing. 2016;19(194):260–70. Shao Z, Er MJ. Efficient leave-one-out cross-validation-basedregularized extreme learning machine. Neurocomputing. 2016;19(194):260–70.
9.
go back to reference Chen YY, Wang ZB. Novel variable selection method based on uninformative variable elimination and ridge extreme learning machine: CO gas concentration retrieval trial. Guang pu xue yu guang pu fen xi= Guang pu. 2017;37(1):299–305. Chen YY, Wang ZB. Novel variable selection method based on uninformative variable elimination and ridge extreme learning machine: CO gas concentration retrieval trial. Guang pu xue yu guang pu fen xi= Guang pu. 2017;37(1):299–305.
10.
go back to reference Yu Q, Miche Y, Eirola E, Van Heeswijk M, Séverin E, Lendasse A. Regularized extreme learning machine for regression with missing data. Neurocomputing. 2013;15(102):45–51.CrossRef Yu Q, Miche Y, Eirola E, Van Heeswijk M, Séverin E, Lendasse A. Regularized extreme learning machine for regression with missing data. Neurocomputing. 2013;15(102):45–51.CrossRef
11.
go back to reference Wang H, Li G. Extreme learning machine Cox model for high-dimensional survival analysis. Stat Med. 2019;38(12):2139–56.MathSciNetCrossRef Wang H, Li G. Extreme learning machine Cox model for high-dimensional survival analysis. Stat Med. 2019;38(12):2139–56.MathSciNetCrossRef
12.
go back to reference Yildirim H, Özkale MR. The performance of ELM based ridge regression via the regularization parameters. Expert Syst Appl. 2019;15(134):225–33.CrossRef Yildirim H, Özkale MR. The performance of ELM based ridge regression via the regularization parameters. Expert Syst Appl. 2019;15(134):225–33.CrossRef
13.
go back to reference Luo X, Chang X, Ban X. Regression and classification using extreme learning machine based on L1-norm and L2-norm. Neurocomputing. 2016;22(174):179–86.CrossRef Luo X, Chang X, Ban X. Regression and classification using extreme learning machine based on L1-norm and L2-norm. Neurocomputing. 2016;22(174):179–86.CrossRef
14.
go back to reference Kejian L. A new class of blased estimate in linear regression. Commun Stat Theor Methods. 1993;22(2):393–402.CrossRef Kejian L. A new class of blased estimate in linear regression. Commun Stat Theor Methods. 1993;22(2):393–402.CrossRef
15.
go back to reference Yıldırım H, Özkale MR. An enhanced extreme learning machine based on Liu regression. Neural Process Lett. 2020;52:421–42.CrossRef Yıldırım H, Özkale MR. An enhanced extreme learning machine based on Liu regression. Neural Process Lett. 2020;52:421–42.CrossRef
16.
go back to reference Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Stat Methodol. 1996;58(1):267–88.MathSciNet Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Stat Methodol. 1996;58(1):267–88.MathSciNet
17.
go back to reference Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A. OP-ELM: Optimally pruned extreme learning machine. IEEE Trans Neural Netw. 2009;21(1):158–62.CrossRef Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A. OP-ELM: Optimally pruned extreme learning machine. IEEE Trans Neural Netw. 2009;21(1):158–62.CrossRef
18.
go back to reference Miche Y, Van Heeswijk M, Bas P, Simula O, Lendasse A. TROP-ELM: a double-regularized ELM using LARS and Tikhonov regularization. Neurocomputing. 2011;74(16):2413–21.CrossRef Miche Y, Van Heeswijk M, Bas P, Simula O, Lendasse A. TROP-ELM: a double-regularized ELM using LARS and Tikhonov regularization. Neurocomputing. 2011;74(16):2413–21.CrossRef
19.
go back to reference Martínez-Martínez JM, Escandell-Montero P, Soria-Olivas E, Martín-Guerrero JD, Magdalena-Benedito R, Gómez-Sanchis J. Regularized extreme learning machine for regression problems. Neurocomputing. 2011;74(17):3716–21.CrossRef Martínez-Martínez JM, Escandell-Montero P, Soria-Olivas E, Martín-Guerrero JD, Magdalena-Benedito R, Gómez-Sanchis J. Regularized extreme learning machine for regression problems. Neurocomputing. 2011;74(17):3716–21.CrossRef
20.
go back to reference Shan P, Zhao Y, Sha X, Wang Q, Lv X, Peng S, Ying Y. Interval lasso regression based extreme learning machine for nonlinear multivariate calibration of near infrared spectroscopic datasets. Anal Methods. 2018;10(25):3011–22.CrossRef Shan P, Zhao Y, Sha X, Wang Q, Lv X, Peng S, Ying Y. Interval lasso regression based extreme learning machine for nonlinear multivariate calibration of near infrared spectroscopic datasets. Anal Methods. 2018;10(25):3011–22.CrossRef
21.
go back to reference Li R, Wang X, Lei L, Song Y. \( L_ 21 \)-norm based loss function and regularization extreme learning machine. IEEE Access. 2018;18(7):6575–86. Li R, Wang X, Lei L, Song Y. \( L_ 21 \)-norm based loss function and regularization extreme learning machine. IEEE Access. 2018;18(7):6575–86.
22.
go back to reference Preeti, Bala R, Dagar A, Singh RP. A novel online sequential extreme learning machine with L 2, 1-norm regularization for prediction problems. Appl Intell. 2021;51:1669–89. Preeti, Bala R, Dagar A, Singh RP. A novel online sequential extreme learning machine with L 2, 1-norm regularization for prediction problems. Appl Intell. 2021;51:1669–89.
23.
go back to reference Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Ser B Stat Methodol. 2005;67(2):301–20.MathSciNetCrossRef Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Ser B Stat Methodol. 2005;67(2):301–20.MathSciNetCrossRef
24.
go back to reference Yıldırım H, Özkale MR. LL-ELM: a regularized extreme learning machine based on L 1-norm and Liu estimator. Neural Comput Appl. 2021;33(16):10469–84.CrossRef Yıldırım H, Özkale MR. LL-ELM: a regularized extreme learning machine based on L 1-norm and Liu estimator. Neural Comput Appl. 2021;33(16):10469–84.CrossRef
25.
go back to reference Rao CR, Mitra SK. Generalized inverse of a matrix and itsapplications. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Theory of Statistics (Vol. 6). University of California Press; 1972. p. 601–21. Rao CR, Mitra SK. Generalized inverse of a matrix and itsapplications. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Theory of Statistics (Vol. 6). University of California Press; 1972. p. 601–21.
26.
go back to reference Schott JR. Matrix analysis for statistics. John Wiley & Sons; 2016. Schott JR. Matrix analysis for statistics. John Wiley & Sons; 2016.
28.
go back to reference Yıldırım H, Özkale MR. A combination of ridge and Liu regressions for extreme learning machine. Soft Comput. 2023;27(5):2493–508. Yıldırım H, Özkale MR. A combination of ridge and Liu regressions for extreme learning machine. Soft Comput. 2023;27(5):2493–508.
29.
go back to reference Sjöstrand K, Clemmensen LH, Larsen R, Einarsson G, Ersbøll B. Spasm: a Matlab toolbox for sparse statistical modeling. J Stat Softw. 2018;23(84):1–37. Sjöstrand K, Clemmensen LH, Larsen R, Einarsson G, Ersbøll B. Spasm: a Matlab toolbox for sparse statistical modeling. J Stat Softw. 2018;23(84):1–37.
31.
go back to reference Rosset S, Zhu J. Piecewise linear regularized solution paths. Ann Stat. 2007;1:1012–30.MathSciNet Rosset S, Zhu J. Piecewise linear regularized solution paths. Ann Stat. 2007;1:1012–30.MathSciNet
Metadata
Title
A Novel Regularized Extreme Learning Machine Based on -Norm and -Norm: a Sparsity Solution Alternative to Lasso and Elastic Net
Authors
Hasan Yıldırım
M. Revan Özkale
Publication date
01-12-2023
Publisher
Springer US
Published in
Cognitive Computation / Issue 2/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-023-10220-w

Other articles of this Issue 2/2024

Cognitive Computation 2/2024 Go to the issue

Premium Partner