Skip to main content
Top

2023 | OriginalPaper | Chapter

A Novel Self-learning Cybersecurity System for Smart Grids

Authors : Michalis Skoumperdis, Nikolaos Vakakis, Maria Diamantaki, Charalampos-Rafail Medentzidis, Dimitrios Karanassos, Dimosthenis Ioannidis, Dimitrios Tzovaras

Published in: Power Systems Cybersecurity

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The dynamic nature of cyberattacks, as well as the incorrect predictions of Artificial Intelligence (AI)-based cybersecurity intrusion detection systems, are major impediments to the efficient protection of critical infrastructures’ Information Technology (IT) and Operational Technology (OT) systems, including Electrical Power Energy Systems (EPES). This phenomenon is caused by the cyberattack detection models, which lose their effectiveness over time. The variability of cybersecurity threats makes it difficult to establish and implement a specific model, which detects all types of attacks accurately. The key to system protection is the integration of a cybersecurity framework, which simultaneously addresses new potential threats, fixes misclassified predictions and utilizes the best performing model, according to the most recent data. This work proposes a self-learning engine which is based on the SPARK data analytics framework and is integrated into a cybersecurity platform. The self-learning module provides the opportunity for annotating data to correct misclassifications or to add intelligence regarding previously unknown attacks. Initially, the domain experts submit annotated data through a Visual Analytics (VA) & monitoring system, to start the retraining process. Three (3) machine-learning (ML) methods–Random Forest (RF), Logistic Regression (LR) and K-nearest neighbors (KNN)-as well as one (1) Deep Learning (DL) method-SDAE-are dynamically compared in terms of \(F_1\) score and accuracy. After the completion of the retraining process, the best performing model replaces the existing one and labels the incoming data. The dynamic nature of the self-learning module implies that it gets annotations from users anytime, compares the methods during the retraining process and assigns data labelling to the most accurate model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. Bou-Harb, C. Fachkha, M. Pourzandi, M. Debbabi, C. Assi, Communication security for smart grid distribution networks. IEEE Commun. Mag. 51(1), 42–49 (2013)CrossRef E. Bou-Harb, C. Fachkha, M. Pourzandi, M. Debbabi, C. Assi, Communication security for smart grid distribution networks. IEEE Commun. Mag. 51(1), 42–49 (2013)CrossRef
2.
go back to reference D. Faquir, N. Chouliaras, V. Sofia, K. Olga, L. Maglaras, Cybersecurity in smart grids, challenges and solutions. AIMS Electron. Electric. Eng. 5(1), 24–37 (2021) D. Faquir, N. Chouliaras, V. Sofia, K. Olga, L. Maglaras, Cybersecurity in smart grids, challenges and solutions. AIMS Electron. Electric. Eng. 5(1), 24–37 (2021)
3.
go back to reference W. Wang, Z. Lu, Cyber security in the smart grid: Survey and challenges. Comput. Netw. 57(5), 1344–1371 (2013)CrossRef W. Wang, Z. Lu, Cyber security in the smart grid: Survey and challenges. Comput. Netw. 57(5), 1344–1371 (2013)CrossRef
4.
go back to reference D. Wei, Y. Lu, M. Jafari, P.M. Skare, K. Rohde, Protecting smart grid automation systems against cyberattacks. IEEE Trans. Smart Grid 2(4), 782–795 (2011)CrossRef D. Wei, Y. Lu, M. Jafari, P.M. Skare, K. Rohde, Protecting smart grid automation systems against cyberattacks. IEEE Trans. Smart Grid 2(4), 782–795 (2011)CrossRef
5.
go back to reference X. Li, X. Liang, R. Lu, X. Shen, X. Lin, H. Zhu, Securing smart grid: cyber attacks, countermeasures, and challenges. IEEE Commun. Mag. 50(8), 38–45 (2012)CrossRef X. Li, X. Liang, R. Lu, X. Shen, X. Lin, H. Zhu, Securing smart grid: cyber attacks, countermeasures, and challenges. IEEE Commun. Mag. 50(8), 38–45 (2012)CrossRef
6.
go back to reference M.Z. Gunduz, R. Das, Analysis of cyber-attacks on smart grid applications, in 2018 International Conference on Artificial Intelligence and Data Processing (IDAP) (IEEE, 2018), pp. 1–5 M.Z. Gunduz, R. Das, Analysis of cyber-attacks on smart grid applications, in 2018 International Conference on Artificial Intelligence and Data Processing (IDAP) (IEEE, 2018), pp. 1–5
7.
go back to reference G. Bedi, G.K. Venayagamoorthy, R. Singh, R.R. Brooks, K.-C. Wang, Review of internet of things (iot) in electric power and energy systems. IEEE Internet Things J. 5(2), 847–870 (2018)CrossRef G. Bedi, G.K. Venayagamoorthy, R. Singh, R.R. Brooks, K.-C. Wang, Review of internet of things (iot) in electric power and energy systems. IEEE Internet Things J. 5(2), 847–870 (2018)CrossRef
8.
go back to reference H. Lin, S. Sambamoorthy, S. Shukla, J. Thorp, L. Mili, A study of communication and power system infrastructure interdependence on pmu-based wide area monitoring and protection, in 2012 IEEE Power and Energy Society General Meeting (IEEE, 2012), pp. 1–7 H. Lin, S. Sambamoorthy, S. Shukla, J. Thorp, L. Mili, A study of communication and power system infrastructure interdependence on pmu-based wide area monitoring and protection, in 2012 IEEE Power and Energy Society General Meeting (IEEE, 2012), pp. 1–7
11.
go back to reference M.R. Habibi, H.R. Baghaee, T. Dragičević, F. Blaabjerg, Detection of false data injection cyber-attacks in dc microgrids based on recurrent neural networks. IEEE J. Emerg. Select. Top. Power Electron. 9(5), 5294–5310 (2020)CrossRef M.R. Habibi, H.R. Baghaee, T. Dragičević, F. Blaabjerg, Detection of false data injection cyber-attacks in dc microgrids based on recurrent neural networks. IEEE J. Emerg. Select. Top. Power Electron. 9(5), 5294–5310 (2020)CrossRef
12.
go back to reference A.A. Elsaeidy, A. Jamalipour, K.S. Munasinghe, A hybrid deep learning approach for replay and ddos attack detection in a smart city. IEEE Access 9, 154864–154875 (2021)CrossRef A.A. Elsaeidy, A. Jamalipour, K.S. Munasinghe, A hybrid deep learning approach for replay and ddos attack detection in a smart city. IEEE Access 9, 154864–154875 (2021)CrossRef
13.
go back to reference X. Zhong, A. Ahmadi, R. Brooks, G.K. Venayagamoorthy, L. Yu, Y. Fu, Side channel analysis of multiple pmu data in electric power systems, in 2015 Clemson University Power Systems Conference (PSC) (IEEE, 2015), pp. 1–6 X. Zhong, A. Ahmadi, R. Brooks, G.K. Venayagamoorthy, L. Yu, Y. Fu, Side channel analysis of multiple pmu data in electric power systems, in 2015 Clemson University Power Systems Conference (PSC) (IEEE, 2015), pp. 1–6
14.
go back to reference M.R. Habibi, S. Sahoo, S. Rivera, T. Dragičević, F. Blaabjerg, Decentralized coordinated cyberattack detection and mitigation strategy in dc microgrids based on artificial neural networks. IEEE J. Emerg. Select. Top. Power Electron. 9(4), 4629–4638 (2021)CrossRef M.R. Habibi, S. Sahoo, S. Rivera, T. Dragičević, F. Blaabjerg, Decentralized coordinated cyberattack detection and mitigation strategy in dc microgrids based on artificial neural networks. IEEE J. Emerg. Select. Top. Power Electron. 9(4), 4629–4638 (2021)CrossRef
15.
go back to reference J. Zhang, L. Pan, Q.-L. Han, C. Chen, S. Wen, Y. Xiang, Deep learning based attack detection for cyber-physical system cybersecurity: a survey. IEEE/CAA J. Autom. Sinica 9(3), 377–391 (2021)CrossRef J. Zhang, L. Pan, Q.-L. Han, C. Chen, S. Wen, Y. Xiang, Deep learning based attack detection for cyber-physical system cybersecurity: a survey. IEEE/CAA J. Autom. Sinica 9(3), 377–391 (2021)CrossRef
16.
go back to reference I.H. Sarker, Deep cybersecurity: a comprehensive overview from neural network and deep learning perspective. SN Comput. Sci. 2(3), 1–16 (2021)MathSciNetCrossRef I.H. Sarker, Deep cybersecurity: a comprehensive overview from neural network and deep learning perspective. SN Comput. Sci. 2(3), 1–16 (2021)MathSciNetCrossRef
17.
go back to reference M. Keshk, B. Turnbull, N. Moustafa, D. Vatsalan, K.-K.R. Choo, A privacy-preserving-framework-based blockchain and deep learning for protecting smart power networks. IEEE Trans. Ind. Inf. 16(8), 5110–5118 (2019)CrossRef M. Keshk, B. Turnbull, N. Moustafa, D. Vatsalan, K.-K.R. Choo, A privacy-preserving-framework-based blockchain and deep learning for protecting smart power networks. IEEE Trans. Ind. Inf. 16(8), 5110–5118 (2019)CrossRef
18.
go back to reference S. Potluri, N.F. Henry, C. Diedrich, Evaluation of hybrid deep learning techniques for ensuring security in networked control systems, in: 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) (IEEE, 2017), pp. 1–8 S. Potluri, N.F. Henry, C. Diedrich, Evaluation of hybrid deep learning techniques for ensuring security in networked control systems, in: 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) (IEEE, 2017), pp. 1–8
19.
go back to reference J. Wang, D. Shi, Y. Li, J. Chen, H. Ding, X. Duan, Distributed framework for detecting pmu data manipulation attacks with deep autoencoders. IEEE Trans. Smart Grid 10(4), 4401–4410 (2018)CrossRef J. Wang, D. Shi, Y. Li, J. Chen, H. Ding, X. Duan, Distributed framework for detecting pmu data manipulation attacks with deep autoencoders. IEEE Trans. Smart Grid 10(4), 4401–4410 (2018)CrossRef
20.
go back to reference S. Russo, M. Lürig, W. Hao, B. Matthews, K. Villez, Active learning for anomaly detection in environmental data. Environ. Modell. Softw. 134, 104869 (2020)CrossRef S. Russo, M. Lürig, W. Hao, B. Matthews, K. Villez, Active learning for anomaly detection in environmental data. Environ. Modell. Softw. 134, 104869 (2020)CrossRef
21.
go back to reference H. Su, J. Deng, L. Fei-Fei, Crowdsourcing annotations for visual object detection, in Workshops at the Twenty-Sixth AAAI Conference on Artificial Intelligence (2012) H. Su, J. Deng, L. Fei-Fei, Crowdsourcing annotations for visual object detection, in Workshops at the Twenty-Sixth AAAI Conference on Artificial Intelligence (2012)
22.
go back to reference T.-N. Le, A. Sugimoto, S. Ono, H. Kawasaki, Toward interactive self-annotation for video object bounding box: recurrent self-learning and hierarchical annotation based framework, in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (2020), pp. 3231–3240 T.-N. Le, A. Sugimoto, S. Ono, H. Kawasaki, Toward interactive self-annotation for video object bounding box: recurrent self-learning and hierarchical annotation based framework, in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (2020), pp. 3231–3240
23.
go back to reference F. De Sousa Ribeiro, F. Calivá, M. Swainson, K. Gudmundsson, G. Leontidis, S. Kollias, Deep bayesian self-training. Neural Comput. Appl. 32(9), 4275–4291 (2020)CrossRef F. De Sousa Ribeiro, F. Calivá, M. Swainson, K. Gudmundsson, G. Leontidis, S. Kollias, Deep bayesian self-training. Neural Comput. Appl. 32(9), 4275–4291 (2020)CrossRef
24.
go back to reference B.C. Benato, J.F. Gomes, A.C. Telea, A.X. Falcão, Semi-automatic data annotation guided by feature space projection. Pattern Recogn. 109, 107612 (2021)CrossRef B.C. Benato, J.F. Gomes, A.C. Telea, A.X. Falcão, Semi-automatic data annotation guided by feature space projection. Pattern Recogn. 109, 107612 (2021)CrossRef
26.
go back to reference A. Bitarafan, M. Nikdan, M. Soleymanibaghshah, 3d image segmentation with sparse annotation by self-training and internal registration. IEEE J. Biomed. Health Inf. (2020) A. Bitarafan, M. Nikdan, M. Soleymanibaghshah, 3d image segmentation with sparse annotation by self-training and internal registration. IEEE J. Biomed. Health Inf. (2020)
27.
go back to reference C.L. Srinidhi, S.W. Kim, F.-D. Chen, A.L. Martel, Self-supervised driven consistency training for annotation efficient histopathology image analysis (2021). arXiv:2102.03897 C.L. Srinidhi, S.W. Kim, F.-D. Chen, A.L. Martel, Self-supervised driven consistency training for annotation efficient histopathology image analysis (2021). arXiv:​2102.​03897
28.
go back to reference X. Wang, R. Zhang, C. Shen, T. Kong, L. Li, Dense contrastive learning for self-supervised visual pre-training, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021), pp. 3024–3033 X. Wang, R. Zhang, C. Shen, T. Kong, L. Li, Dense contrastive learning for self-supervised visual pre-training, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021), pp. 3024–3033
29.
go back to reference D. van der Wal, I. Jhun, I. Laklouk, J. Nirschl, L. Richer, R. Rojansky, T. Theparee, J. Wheeler, J. Sander, F. Feng et al., Biological data annotation via a human-augmenting ai-based labeling system. NPJ Digit. Med. 4(1), 1–7 (2021) D. van der Wal, I. Jhun, I. Laklouk, J. Nirschl, L. Richer, R. Rojansky, T. Theparee, J. Wheeler, J. Sander, F. Feng et al., Biological data annotation via a human-augmenting ai-based labeling system. NPJ Digit. Med. 4(1), 1–7 (2021)
30.
go back to reference J. Zhu, H. Wang, T. Yao, B.K. Tsou, Active learning with sampling by uncertainty and density for word sense disambiguation and text classification, in Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008) (2008), pp. 1137–1144 J. Zhu, H. Wang, T. Yao, B.K. Tsou, Active learning with sampling by uncertainty and density for word sense disambiguation and text classification, in Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008) (2008), pp. 1137–1144
31.
go back to reference V. Romero, J.A. Sánchez, A.H. Toselli, Active learning in handwritten text recognition using the derivational entropy, in 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) (IEEE, 2018), pp. 291–296 V. Romero, J.A. Sánchez, A.H. Toselli, Active learning in handwritten text recognition using the derivational entropy, in 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) (IEEE, 2018), pp. 291–296
32.
go back to reference S. Mussmann, P. Liang, On the relationship between data efficiency and error for uncertainty sampling, in International Conference on Machine Learning. PMLR (2018), pp. 3674–3682 S. Mussmann, P. Liang, On the relationship between data efficiency and error for uncertainty sampling, in International Conference on Machine Learning. PMLR (2018), pp. 3674–3682
33.
go back to reference M. Charalampos-Rafail, K. Thanasis, V. Vasileios, I. Dimosthenis, T. Dimitrios, S. Panagiotis, Cyber attack detection and trust management toolkit for defence-related m booktitle= M. Charalampos-Rafail, K. Thanasis, V. Vasileios, I. Dimosthenis, T. Dimitrios, S. Panagiotis, Cyber attack detection and trust management toolkit for defence-related m booktitle=
34.
go back to reference P. Radoglou-Grammatikis, P. Sarigiannidis, E. Iturbe, E. Rios, S. Martinez, A. Sarigiannidis, G. Eftathopoulos, Y. Spyridis, A. Sesis, N. Vakakis et al., Spear siem: a security information and event management system for the smart grid. Comput. Netw. 193, 108008 (2021)CrossRef P. Radoglou-Grammatikis, P. Sarigiannidis, E. Iturbe, E. Rios, S. Martinez, A. Sarigiannidis, G. Eftathopoulos, Y. Spyridis, A. Sesis, N. Vakakis et al., Spear siem: a security information and event management system for the smart grid. Comput. Netw. 193, 108008 (2021)CrossRef
35.
go back to reference A.M. Mohsen, N.M. El-Makky, N. Ghanem, Author identification using deep learning, in 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA) (IEEE, 2016), pp. 898–903 A.M. Mohsen, N.M. El-Makky, N. Ghanem, Author identification using deep learning, in 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA) (IEEE, 2016), pp. 898–903
36.
go back to reference Y. Bengio, Practical recommendations for gradient-based training of deep architectures, in Neural Networks: Tricks of the Trade (Springer, ???, 2012), pp. 437–478 Y. Bengio, Practical recommendations for gradient-based training of deep architectures, in Neural Networks: Tricks of the Trade (Springer, ???, 2012), pp. 437–478
37.
go back to reference P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, L. Bottou, Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12) (2010) P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, L. Bottou, Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12) (2010)
Metadata
Title
A Novel Self-learning Cybersecurity System for Smart Grids
Authors
Michalis Skoumperdis
Nikolaos Vakakis
Maria Diamantaki
Charalampos-Rafail Medentzidis
Dimitrios Karanassos
Dimosthenis Ioannidis
Dimitrios Tzovaras
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-20360-2_14