Skip to main content
Top
Published in:

2024 | OriginalPaper | Chapter

A Novel Three-Phase Smart Inverter Based on Long Short-Term Memory Network for VAR Compensation

Authors : Ying-Yi Hong, Jyun-Hao Bai

Published in: Proceedings of The 6th International Conference on Clean Energy and Electrical Systems

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As the proportion of renewable energy generation in the power grid continues to increase, integrating it into the grid will have a significant impact on the existing power system. Therefore, countries around the world have introduced strict standards for renewable energy grid integration, especially when grid faults occur. Renewable energy sources must be able to inject reactive power to maintain grid voltage at required levels via smart inverters in case low voltage occurs. In the past, inverter control primarily relied on Proportional Integral (PI) controllers, and parameter tuning was often done through trial and error or empirical methods. This approach was time-consuming, costly, and lacked robustness. Long Short-Term Memory (LSTM) networks, on the other hand, offer advantages of recurrent neural networks while addressing the issues of vanishing and exploding gradients. This paper utilizes LSTM networks followed by fully connected layers as the primary controller for the inverter. The paper uses both an outer loop and an inner loop to off-line optimize the LSTM network controller, replacing traditional PI controllers. The inner loop employs the Adam optimizer to optimize the weights and biases of the LSTM network and the fully connected layers, while the outer loop uses the Particle Swarm Optimization algorithm to optimize the initial learning rate and batch size of Adam optimizer and the number of hidden units in the LSTM network. Through simulation and experimentation, the proposed method achieved smaller averages of Root Mean Squared Error (0.0243) and Mean Absolute Error (0.0106) compared to those (0.0407 and 0.0330) obtained by the traditional PI controller, respectively. These results indicate that the proposed method outperforms traditional PI controllers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Easley, M., Jain, S., Shadmand, M., Abu-Rub, H.: Autonomous model predictive controlled smart inverter with proactive grid fault ride-through capability. IEEE Trans. Energy Convers. 35(4), 1825–1836 (2020)CrossRef Easley, M., Jain, S., Shadmand, M., Abu-Rub, H.: Autonomous model predictive controlled smart inverter with proactive grid fault ride-through capability. IEEE Trans. Energy Convers. 35(4), 1825–1836 (2020)CrossRef
2.
go back to reference Varma, R.K., Siavashi, E.M.: PV-STATCOM: a new smart inverter for voltage control in distribution systems. IEEE Trans. Sustain. Energy 9(4), 1681–1691 (2018)CrossRef Varma, R.K., Siavashi, E.M.: PV-STATCOM: a new smart inverter for voltage control in distribution systems. IEEE Trans. Sustain. Energy 9(4), 1681–1691 (2018)CrossRef
4.
go back to reference Zeraati, M., Golshan, M.E.H., Guerrero, J.M.: Voltage quality improvement in low voltage distribution networks using reactive power capability of single-phase PV inverters. IEEE Trans. Smart Grid 10(5), 5057–5065 (2019)CrossRef Zeraati, M., Golshan, M.E.H., Guerrero, J.M.: Voltage quality improvement in low voltage distribution networks using reactive power capability of single-phase PV inverters. IEEE Trans. Smart Grid 10(5), 5057–5065 (2019)CrossRef
5.
go back to reference Singhal, A., Ajjarapu, V., Fuller, J., Hansen, J.: Real-Time local volt/var control under external disturbances with high PV penetration. IEEE Trans. Smart Grid 10(4), 3849–3859 (2019)CrossRef Singhal, A., Ajjarapu, V., Fuller, J., Hansen, J.: Real-Time local volt/var control under external disturbances with high PV penetration. IEEE Trans. Smart Grid 10(4), 3849–3859 (2019)CrossRef
6.
go back to reference Wang, B., Xu, Y., Shen, Z., Zou, J., Li, C., Liu, H.: Current control of grid-connected inverter with LCL filter based on extended-state observer estimations using single sensor and achieving improved robust observation dynamics. IEEE Trans. Industr. Electron. 64(7), 5428–5439 (2017)CrossRef Wang, B., Xu, Y., Shen, Z., Zou, J., Li, C., Liu, H.: Current control of grid-connected inverter with LCL filter based on extended-state observer estimations using single sensor and achieving improved robust observation dynamics. IEEE Trans. Industr. Electron. 64(7), 5428–5439 (2017)CrossRef
7.
go back to reference Lin, F.J., Tan, K.H., Luo, W.C., Xiao, G.D.: Improved LVRT performance of PV power plant using recurrent wavelet fuzzy neural network control for weak grid conditions. IEEE Access 8, 69346–69358 (2020)CrossRef Lin, F.J., Tan, K.H., Luo, W.C., Xiao, G.D.: Improved LVRT performance of PV power plant using recurrent wavelet fuzzy neural network control for weak grid conditions. IEEE Access 8, 69346–69358 (2020)CrossRef
8.
go back to reference Liu, Q., Caldognetto, T., Buso, S.: Review and comparison of grid-tied inverter controllers in microgrids. IEEE Trans. Power Electron. 35(7), 7624–7639 (2020)CrossRef Liu, Q., Caldognetto, T., Buso, S.: Review and comparison of grid-tied inverter controllers in microgrids. IEEE Trans. Power Electron. 35(7), 7624–7639 (2020)CrossRef
9.
go back to reference Buduma, N.: Fundamentals of Deep Learning: Designing Next-Generation Artificial Intelligence Algorithms. O’Reilly Media, Sebastopol (2016) Buduma, N.: Fundamentals of Deep Learning: Designing Next-Generation Artificial Intelligence Algorithms. O’Reilly Media, Sebastopol (2016)
10.
go back to reference Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95 – International Conference on Neural Networks, Perth, Australia (1995) Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95 – International Conference on Neural Networks, Perth, Australia (1995)
Metadata
Title
A Novel Three-Phase Smart Inverter Based on Long Short-Term Memory Network for VAR Compensation
Authors
Ying-Yi Hong
Jyun-Hao Bai
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-5775-6_1