Skip to main content
Top
Published in: Rare Metals 6/2021

07-01-2021 | Communication

A novel three-step approach to separate cathode components for lithium-ion battery recycling

Authors: Yun Zhao, Ling-Zhe Fang, Yu-Qiong Kang, Li Wang, Yu-Nan Zhou, Xin-Yi Liu, Tao Li, Yan-Xi Li, Zheng Liang, Zhe-Xu Zhang, Bao-Hua Li

Published in: Rare Metals | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lithium-ion batteries (LIBs) represent efficient energy storage technology that can help to alleviate fossil fuel-based CO2 emissions. Presently, LIBs are being applied extensively in consumer electronics and electric vehicles, but because of limited resources, there is an urgent need for spent LIB recycling technologies. The complexity of LIBs, especially the electrode part, makes it difficult to achieve precision separations for each single component from the used electrode with low emissions. Herein, we propose a three-step treatment for the separation of cathode components. In detail, detaching of the current collector from the cathode is accomplished by the solvent method, which was found to be an ideal strategy compared with previous reports. Then, a thermal treatment is used to remove the polymer binder in the second step because we demonstrated that it is challenging to separate polyvinylidene fluoride (PVDF) from other cathode components by dissolution with N-methylpyrrolidone. The separation efficiency between the active material and conductive carbon by the polymer solution in the third step showed reasonably good results. We anticipate this work will serve as an important reference for the separation of each single electrode component in both laboratory- and industrial-scale applications. Separation of binder and development of novel binders, which can be easily recycled for sustainable LIBs, are fruitful areas for further research.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
[1]
go back to reference Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci. 2011;4(9):3243.CrossRef Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci. 2011;4(9):3243.CrossRef
[2]
go back to reference Kang Y, Liang Z, Zhao Y, Xu H, Qian K, He X, Li T, Li J. Large-scale synthesis of lithium-and manganese-rich materials with uniform thin-film Al2O3 coating for stable cathode cycling. Sci China Mater. 2020;63(9):1683.CrossRef Kang Y, Liang Z, Zhao Y, Xu H, Qian K, He X, Li T, Li J. Large-scale synthesis of lithium-and manganese-rich materials with uniform thin-film Al2O3 coating for stable cathode cycling. Sci China Mater. 2020;63(9):1683.CrossRef
[3]
go back to reference Chen X, Li H, Yan Z, Cheng F, Chen J. Structure design and mechanism analysis of silicon anode for lithium ion batteries. Sci China Mater. 2019;62(11):1515.CrossRef Chen X, Li H, Yan Z, Cheng F, Chen J. Structure design and mechanism analysis of silicon anode for lithium ion batteries. Sci China Mater. 2019;62(11):1515.CrossRef
[5]
go back to reference Li X, Qi SH, Zhang WC, Feng YZ, Ma JM. Recent progress on FeS2 as anodes for metal-ion batteries. Rare Met. 2020;39(11):1239.CrossRef Li X, Qi SH, Zhang WC, Feng YZ, Ma JM. Recent progress on FeS2 as anodes for metal-ion batteries. Rare Met. 2020;39(11):1239.CrossRef
[6]
go back to reference Fan E, Li L, Wang Z, Lin J, Huang Y, Yao Y, Chen R, Wu F. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem Rev. 2020;120(14):7020.CrossRef Fan E, Li L, Wang Z, Lin J, Huang Y, Yao Y, Chen R, Wu F. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem Rev. 2020;120(14):7020.CrossRef
[7]
go back to reference Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Heidrich O, Lambert S, Abbott A, Ryder K, Gaines L, Anderson P. Recycling lithium-ion batteries from electric vehicles. Nature. 2019;575(7781):75.CrossRef Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Heidrich O, Lambert S, Abbott A, Ryder K, Gaines L, Anderson P. Recycling lithium-ion batteries from electric vehicles. Nature. 2019;575(7781):75.CrossRef
[8]
go back to reference Jiang C, Xiang L, Miao S, Shi L, Xie D, Yan J, Zheng Z, Zhang X, Tang Y. Flexible interface design for stress regulation of a silicon anode toward highly stable dual-ion batteries. Adv Mater. 2020;32(17):1908470.CrossRef Jiang C, Xiang L, Miao S, Shi L, Xie D, Yan J, Zheng Z, Zhang X, Tang Y. Flexible interface design for stress regulation of a silicon anode toward highly stable dual-ion batteries. Adv Mater. 2020;32(17):1908470.CrossRef
[9]
go back to reference Wu M, Liao J, Yu L, Lv R, Li P, Sun W, Tan R, Duan X, Zhang L, Li F, Kim J, Shin KH, Park HS, Zhang W, Guo Z, Wang H, Tang Y, Gorgolis G, Galiotis C, Ma J. 2020 roadmap on carbon materials for energy storage and conversion. Chem Asian J. 2020;15(7):995.CrossRef Wu M, Liao J, Yu L, Lv R, Li P, Sun W, Tan R, Duan X, Zhang L, Li F, Kim J, Shin KH, Park HS, Zhang W, Guo Z, Wang H, Tang Y, Gorgolis G, Galiotis C, Ma J. 2020 roadmap on carbon materials for energy storage and conversion. Chem Asian J. 2020;15(7):995.CrossRef
[11]
go back to reference Tran M, Rodrigues M-T, Kato K, Babu G, Ajayan P. Deep eutectic solvents for cathode recycling of Li-ion batteries. Nat Energy. 2019;4(4):339.CrossRef Tran M, Rodrigues M-T, Kato K, Babu G, Ajayan P. Deep eutectic solvents for cathode recycling of Li-ion batteries. Nat Energy. 2019;4(4):339.CrossRef
[12]
go back to reference Song D, Wang X, Zhou E, Hou P, Guo F, Zhang L. Recovery and heat treatment of the Li(Ni1/3Co1/3Mn1/3)O2 cathode scrap material for lithium ion battery. J Power Sources. 2013;232:348.CrossRef Song D, Wang X, Zhou E, Hou P, Guo F, Zhang L. Recovery and heat treatment of the Li(Ni1/3Co1/3Mn1/3)O2 cathode scrap material for lithium ion battery. J Power Sources. 2013;232:348.CrossRef
[13]
go back to reference Cai G, Fung K, Ng K. Process development for the recycle of spent lithium ion batteries by chemical precipitation. Ind Eng Chem Res. 2014;53(47):18245.CrossRef Cai G, Fung K, Ng K. Process development for the recycle of spent lithium ion batteries by chemical precipitation. Ind Eng Chem Res. 2014;53(47):18245.CrossRef
[14]
go back to reference Song D, Wang X, Nie H, Shi H, Wang D, Guo F, Shi X, Zhang L. Heat treatment of LiCoO2 recovered from cathode scraps with solvent method. J Power Sources. 2014;249:137.CrossRef Song D, Wang X, Nie H, Shi H, Wang D, Guo F, Shi X, Zhang L. Heat treatment of LiCoO2 recovered from cathode scraps with solvent method. J Power Sources. 2014;249:137.CrossRef
[15]
go back to reference Bertuol D, Toniasso C, Jimenez B, Meili L, Dotto G, Tanabe E, Aguiar M. Application of spouted bed elutriation in the recycling of lithium ion batteries. J Power Sources. 2015;275:627.CrossRef Bertuol D, Toniasso C, Jimenez B, Meili L, Dotto G, Tanabe E, Aguiar M. Application of spouted bed elutriation in the recycling of lithium ion batteries. J Power Sources. 2015;275:627.CrossRef
[16]
go back to reference Zhang X, Xue Q, Li L, Fan E, Wu F, Chen R. Sustainable recycling and regeneration of cathode scraps from industrial production of lithium-ion batteries. ACS Sustain Chem Eng. 2016;4(12):7041.CrossRef Zhang X, Xue Q, Li L, Fan E, Wu F, Chen R. Sustainable recycling and regeneration of cathode scraps from industrial production of lithium-ion batteries. ACS Sustain Chem Eng. 2016;4(12):7041.CrossRef
[17]
go back to reference Hu J, Zhang J, Li H, Chen Y, Wang C. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries. J Power Sources. 2017;351:192.CrossRef Hu J, Zhang J, Li H, Chen Y, Wang C. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries. J Power Sources. 2017;351:192.CrossRef
[18]
go back to reference Pagnanelli F, Moscardini E, Altimari P, Atia T, Toro L. Leaching of electrodic powders from lithium ion batteries: optimization of operating conditions and effect of physical pretreatment for waste fraction retrieval. Waste Manag. 2017;60:706.CrossRef Pagnanelli F, Moscardini E, Altimari P, Atia T, Toro L. Leaching of electrodic powders from lithium ion batteries: optimization of operating conditions and effect of physical pretreatment for waste fraction retrieval. Waste Manag. 2017;60:706.CrossRef
[20]
go back to reference Song X, Hu T, Liang C, Long H, Zhou L, Song W, You L, Wu Z, Liu J. Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method. RSC Adv. 2017;7(8):4783.CrossRef Song X, Hu T, Liang C, Long H, Zhou L, Song W, You L, Wu Z, Liu J. Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method. RSC Adv. 2017;7(8):4783.CrossRef
[21]
go back to reference Xiao J, Li J, Xu Z. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy. J Hazard Mater. 2017;338:124.CrossRef Xiao J, Li J, Xu Z. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy. J Hazard Mater. 2017;338:124.CrossRef
[22]
go back to reference Yua J, He Y, Ge Z, Li H, Xie W, Wang S. A promising physical method for recovery of LiCoO2 and graphite from spent lithium-ion batteries: grinding flotation. Sep Purif Technol. 2018;190:45.CrossRef Yua J, He Y, Ge Z, Li H, Xie W, Wang S. A promising physical method for recovery of LiCoO2 and graphite from spent lithium-ion batteries: grinding flotation. Sep Purif Technol. 2018;190:45.CrossRef
[23]
go back to reference He LP, Sun SY, Song XF, Yu JG. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning. Waste Manag. 2015;46:523.CrossRef He LP, Sun SY, Song XF, Yu JG. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning. Waste Manag. 2015;46:523.CrossRef
[24]
go back to reference Wang M, Tan Q, Liu L, Li J. Efficient separation of aluminum foil and cathode materials from spent lithium-ion batteries using a low-temperature molten salt. ACS Sustain Chem Eng. 2019;7(9):8287.CrossRef Wang M, Tan Q, Liu L, Li J. Efficient separation of aluminum foil and cathode materials from spent lithium-ion batteries using a low-temperature molten salt. ACS Sustain Chem Eng. 2019;7(9):8287.CrossRef
[25]
go back to reference He Y, Zhang T, Wang F, Zhang G, Zhang W, Wang J. Recovery of LiCoO2 and graphite from spent lithium-ion batteries by Fenton reagent-assisted flotation. J Clean Prod. 2017;143:319.CrossRef He Y, Zhang T, Wang F, Zhang G, Zhang W, Wang J. Recovery of LiCoO2 and graphite from spent lithium-ion batteries by Fenton reagent-assisted flotation. J Clean Prod. 2017;143:319.CrossRef
[26]
go back to reference Li L, Zhai L, Zhang X, Lu J, Chen R, Wu F, Amine K. Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process. J Power Sources. 2014;262:380.CrossRef Li L, Zhai L, Zhang X, Lu J, Chen R, Wu F, Amine K. Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process. J Power Sources. 2014;262:380.CrossRef
[27]
go back to reference Li L, Qu W, Zhang X, Lu J, Chen R, Wu F, Amine K. Succinic acid-based leaching system: a sustainable process for recovery of valuable metals from spent Li-ion batteries. J Power Sources. 2015;282:544.CrossRef Li L, Qu W, Zhang X, Lu J, Chen R, Wu F, Amine K. Succinic acid-based leaching system: a sustainable process for recovery of valuable metals from spent Li-ion batteries. J Power Sources. 2015;282:544.CrossRef
[28]
go back to reference Zhang X, Bian Y, Xu S, Fan E, Xue Q, Guan Y, Wu F, Li L, Chen R. Innovative application of acid leaching to regenerate Li(Ni1/3Co1/3Mn1/3)O2 cathodes from spent lithium-ion batteries. ACS Sustain Chem Eng. 2018;6(5):5959.CrossRef Zhang X, Bian Y, Xu S, Fan E, Xue Q, Guan Y, Wu F, Li L, Chen R. Innovative application of acid leaching to regenerate Li(Ni1/3Co1/3Mn1/3)O2 cathodes from spent lithium-ion batteries. ACS Sustain Chem Eng. 2018;6(5):5959.CrossRef
[29]
go back to reference Nie H, Xu L, Song D, Song J, Shi X, Wang X, Zhang L, Yuan Z. LiCoO2: recycling from spent batteries and regeneration with solid state synthesis. Green Chem. 2015;17(2):1276.CrossRef Nie H, Xu L, Song D, Song J, Shi X, Wang X, Zhang L, Yuan Z. LiCoO2: recycling from spent batteries and regeneration with solid state synthesis. Green Chem. 2015;17(2):1276.CrossRef
[30]
go back to reference Wang W, Han Y, Zhang T, Zhang L, Xu S. Alkali metal salt catalyzed carbothermic reduction for sustainable recovery of LiCoO2: accurately controlled reduction and efficient water leaching. ACS Sustain Chem Eng. 2019;7(19):16729.CrossRef Wang W, Han Y, Zhang T, Zhang L, Xu S. Alkali metal salt catalyzed carbothermic reduction for sustainable recovery of LiCoO2: accurately controlled reduction and efficient water leaching. ACS Sustain Chem Eng. 2019;7(19):16729.CrossRef
[31]
go back to reference Chen H, Ling M, Hencz L, Ling H, Li G, Lin Z, Zhang S. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem Rev. 2018;118(18):8936.CrossRef Chen H, Ling M, Hencz L, Ling H, Li G, Lin Z, Zhang S. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem Rev. 2018;118(18):8936.CrossRef
Metadata
Title
A novel three-step approach to separate cathode components for lithium-ion battery recycling
Authors
Yun Zhao
Ling-Zhe Fang
Yu-Qiong Kang
Li Wang
Yu-Nan Zhou
Xin-Yi Liu
Tao Li
Yan-Xi Li
Zheng Liang
Zhe-Xu Zhang
Bao-Hua Li
Publication date
07-01-2021
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 6/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01587-y

Other articles of this Issue 6/2021

Rare Metals 6/2021 Go to the issue

Premium Partners