Skip to main content
Top
Published in:

16-12-2022

A Novel Unsupervised Spatial–Temporal Learning Mechanism in a Bio-inspired Spiking Neural Network

Authors: Masoud Amiri, Amir Homayoun Jafari‬, Bahador Makkiabadi, Soheila Nazari

Published in: Cognitive Computation | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Bio-inspired computing is a powerful platform that develops intelligent machines based on principles of the behavioral and functional mechanisms of the human nervous system. Such machines can be critical tools in expert systems, speech recognition, pattern recognition, and machine vision. In this study, a retinal model is used as input layer of spiking network to convert image pixels to spike trains. The produced spikes are injected into a spiking neural network (SNN) as a second layer, which structure and functioning is inspired by real neuronal networks (i.e. excitatory and inhibitory neurotransmitters as AMPA and GABA currents and spiking neurons). Similarly, an unsupervised, spatial–temporal, and sparse spike-based learning mechanism based on learning processes in the brain was developed to train the spiking neurons in the output layer for recognizing patterns of MNIST and EMNIST datasets with very high accuracy (above 97%) and CIFAR10 with accuracy 92.9%. The proposed spiking pattern recognition network has higher classification accuracy than previous deep spiking networks and has advantages such as higher convergence speed, unsupervised learning, fewer numbers of hyper-parameters and network layers, and ability to learn with the limited number of training data. Finally, by changing the size and stride of the averaging windows in the visual pathway, we can train the network with only 10% of the training datasets, achieving accuracy similar or higher than state-of-the-art deep learning approaches. The ability to achieve high-performance accuracy in pattern recognition networks despite the limited number of training data is one of the most important challenges of neural networks in artificial intelligence. In summary, the novel bio-inspired neuronal network utilizes spiking trains and learns unsupervised and is capable of recognizing complex patterns, similar in performance to advanced neuronal networks using deep learning, and potentially can be implemented in neuromorphic hardware.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sengupta B, Stemmler MB, Friston KJ. Information and efficiency in the nervous system—a synthesis. PLoS Comput Biol. 2013;9(7): e1003157.CrossRef Sengupta B, Stemmler MB, Friston KJ. Information and efficiency in the nervous system—a synthesis. PLoS Comput Biol. 2013;9(7): e1003157.CrossRef
2.
go back to reference Amiri M, Nazari S, Faez K. Digital realization of the proposed linear model of the H odgkin-H uxley neuron. Int J Circuit Theory Appl. 2019;47(3):483–97.CrossRef Amiri M, Nazari S, Faez K. Digital realization of the proposed linear model of the H odgkin-H uxley neuron. Int J Circuit Theory Appl. 2019;47(3):483–97.CrossRef
3.
go back to reference Diaz C, Sanchez G, Duchen G, Nakano M, Perez H. An efficient hardware implementation of a novel unary spiking neural network multiplier with variable dendritic delays. Neurocomputing. 2016;189:130–4.CrossRef Diaz C, Sanchez G, Duchen G, Nakano M, Perez H. An efficient hardware implementation of a novel unary spiking neural network multiplier with variable dendritic delays. Neurocomputing. 2016;189:130–4.CrossRef
4.
go back to reference Wang Q, Li Y, Shao B, Dey S, Li P. Energy efficient parallel neuromorphic architectures with approximate arithmetic on FPGA. Neurocomputing. 2017;221:146–58.CrossRef Wang Q, Li Y, Shao B, Dey S, Li P. Energy efficient parallel neuromorphic architectures with approximate arithmetic on FPGA. Neurocomputing. 2017;221:146–58.CrossRef
5.
go back to reference Haghiri S, Ahmadi A, Saif M. VLSI implementable neuron-astrocyte control mechanism. Neurocomputing. 2016;214:280–96.CrossRef Haghiri S, Ahmadi A, Saif M. VLSI implementable neuron-astrocyte control mechanism. Neurocomputing. 2016;214:280–96.CrossRef
6.
go back to reference Maguire LP, McGinnity TM, Glackin B, Ghani A, Belatreche A, Harkin J. Challenges for large-scale implementations of spiking neural networks on FPGAs. Neurocomputing. 2007;71(1):13–29.CrossRef Maguire LP, McGinnity TM, Glackin B, Ghani A, Belatreche A, Harkin J. Challenges for large-scale implementations of spiking neural networks on FPGAs. Neurocomputing. 2007;71(1):13–29.CrossRef
7.
go back to reference Indiveri G, Liu SC. Memory and information processing in neuromorphic systems. Proc IEEE. 2015;103(8):1379–97.CrossRef Indiveri G, Liu SC. Memory and information processing in neuromorphic systems. Proc IEEE. 2015;103(8):1379–97.CrossRef
8.
go back to reference Merolla P, Arthur J, Akopyan F, Imam N, Manohar R, Modha DS. A digital neurosynaptic core using embedded crossbar memory with 45pJ per spike in 45nm. In Custom Integrated Circuits Conference (CICC) IEEE 2011. p. 1–4. Merolla P, Arthur J, Akopyan F, Imam N, Manohar R, Modha DS. A digital neurosynaptic core using embedded crossbar memory with 45pJ per spike in 45nm. In Custom Integrated Circuits Conference (CICC) IEEE 2011. p. 1–4.
9.
go back to reference Furber S. Large-scale neuromorphic computing systems. J Neural Eng. 2016;13(5): 051001.CrossRef Furber S. Large-scale neuromorphic computing systems. J Neural Eng. 2016;13(5): 051001.CrossRef
10.
go back to reference Azghadi MR, Iannella N, Al-Sarawi S, Abbott D. Tunable low energy, compact and high performance neuromorphic circuit for spike-based synaptic plasticity. PLoS ONE. 2014;9(2): e88326.CrossRef Azghadi MR, Iannella N, Al-Sarawi S, Abbott D. Tunable low energy, compact and high performance neuromorphic circuit for spike-based synaptic plasticity. PLoS ONE. 2014;9(2): e88326.CrossRef
11.
go back to reference Azghadi MR, Iannella N, Al-Sarawi SF, Indiveri G, Abbott D. Spike-based synaptic plasticity in silicon: design, implementation, application, and challenges. Proc IEEE. 2014;102(5):717–37.CrossRef Azghadi MR, Iannella N, Al-Sarawi SF, Indiveri G, Abbott D. Spike-based synaptic plasticity in silicon: design, implementation, application, and challenges. Proc IEEE. 2014;102(5):717–37.CrossRef
12.
go back to reference Qiao N, Mostafa H, Corradi F, Osswald M, Stefanini F, Sumislawska D, Indiveri G. A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses. Front Neurosci. 2015;9:141.CrossRef Qiao N, Mostafa H, Corradi F, Osswald M, Stefanini F, Sumislawska D, Indiveri G. A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses. Front Neurosci. 2015;9:141.CrossRef
13.
go back to reference McCormick DA, Connors BW, Lighthall JW, Prince DA. Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol. 1985;54(4):782–806.CrossRef McCormick DA, Connors BW, Lighthall JW, Prince DA. Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol. 1985;54(4):782–806.CrossRef
14.
go back to reference Yamazaki K, Vo-Ho VK, Bulsara D, Le N. Spiking neural networks and their applications: a Review. Brain Sci. 2022;12(7):863.CrossRef Yamazaki K, Vo-Ho VK, Bulsara D, Le N. Spiking neural networks and their applications: a Review. Brain Sci. 2022;12(7):863.CrossRef
15.
go back to reference Kattenborn T, Leitloff J, Schiefer F, Hinz S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J Photogramm Remote Sens. 2021;173:24–49.CrossRef Kattenborn T, Leitloff J, Schiefer F, Hinz S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J Photogramm Remote Sens. 2021;173:24–49.CrossRef
16.
go back to reference Blouw P, Eliasmith C. Event-driven signal processing with neuromorphic computing systems. In ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2020. p. 8534–8538. IEEE. Blouw P, Eliasmith C. Event-driven signal processing with neuromorphic computing systems. In ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2020. p. 8534–8538. IEEE.
17.
go back to reference Nazari S, Amiri M, Faez K, Van Hulle MM. Information transmitted from bioinspired Neuron-Astrocyte network improves cortical spiking Network’s pattern recognition performance. IEEE transactions on neural networks and learning systems. 2019;31(2):464–74.MathSciNetCrossRef Nazari S, Amiri M, Faez K, Van Hulle MM. Information transmitted from bioinspired Neuron-Astrocyte network improves cortical spiking Network’s pattern recognition performance. IEEE transactions on neural networks and learning systems. 2019;31(2):464–74.MathSciNetCrossRef
18.
go back to reference Lee C, Sarwar SS, Panda P, Srinivasan G, Roy K. Enabling spike-based backpropagation for training deep neural network architectures. Front Neurosci. 2020;14:119.CrossRef Lee C, Sarwar SS, Panda P, Srinivasan G, Roy K. Enabling spike-based backpropagation for training deep neural network architectures. Front Neurosci. 2020;14:119.CrossRef
19.
go back to reference Chankyu Lee, Syed Shakib Sarwar, and Kaushik Roy. Enabling spike-based backpropagation in state-of-the-art deep neural network architectures. 2019. arXiv preprint arXiv:1903.06379. Chankyu Lee, Syed Shakib Sarwar, and Kaushik Roy. Enabling spike-based backpropagation in state-of-the-art deep neural network architectures. 2019. arXiv preprint arXiv:​1903.​06379.
20.
go back to reference Jibin Wu, Yansong Chua, Malu Zhang, Guoqi Li, Haizhou Li, and Kay Chen Tan. A tandem learning rule for efficient and rapid inference on deep spiking neural networks. arXiv 2019. p. arXiv–1907. Jibin Wu, Yansong Chua, Malu Zhang, Guoqi Li, Haizhou Li, and Kay Chen Tan. A tandem learning rule for efficient and rapid inference on deep spiking neural networks. arXiv 2019. p. arXiv–1907.
21.
go back to reference Wu Y, Deng L, Li G, Zhu J, Xie Y, Shi L. Direct training for spiking neural networks: faster, larger, better. Proc AAAI Conf Artif Intell. 2019;33(01):1311–1318. Wu Y, Deng L, Li G, Zhu J, Xie Y, Shi L. Direct training for spiking neural networks: faster, larger, better. Proc AAAI Conf Artif Intell. 2019;33(01):1311–1318.
22.
go back to reference Zhang W, Li P. Temporal spike sequence learning via backpropagation for deep spiking neural networks. 2020. arXiv preprint arXiv:2002.10085. Zhang W, Li P. Temporal spike sequence learning via backpropagation for deep spiking neural networks. 2020. arXiv preprint arXiv:​2002.​10085.
23.
go back to reference Rathi N, Roy K. Diet-snn: A low-latency spiking neural network with direct input encoding and leakage and threshold optimization. IEEE Transact Neural Netw Learn Syst. 2021. Rathi N, Roy K. Diet-snn: A low-latency spiking neural network with direct input encoding and leakage and threshold optimization. IEEE Transact Neural Netw Learn Syst. 2021.
24.
go back to reference Chen X, Wang W, Bender C, Ding Y, Jia R, Li B, Song D. Refit: a unified watermark removal framework for deep learning systems with limited data. In Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security 2021. p. 321-335. Chen X, Wang W, Bender C, Ding Y, Jia R, Li B, Song D. Refit: a unified watermark removal framework for deep learning systems with limited data. In Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security 2021. p. 321-335.
25.
go back to reference Mazzoni A, Panzeri S, Logothetis NK, Brunel N. Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons. PLoS Comput Biol. 2008;4(12): e1000239.MathSciNetCrossRef Mazzoni A, Panzeri S, Logothetis NK, Brunel N. Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons. PLoS Comput Biol. 2008;4(12): e1000239.MathSciNetCrossRef
26.
go back to reference Neil D, Liu SC. Minitaur, an event-driven FPGA-based spiking network accelerator. IEEE Transact Very Large Scale Integr (VLSI) Syst. 2014;22(12):2621–2628. Neil D, Liu SC. Minitaur, an event-driven FPGA-based spiking network accelerator. IEEE Transact Very Large Scale Integr (VLSI) Syst. 2014;22(12):2621–2628.
27.
go back to reference Diehl PU, Cook M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front Comput Neurosci. 2015;9. Diehl PU, Cook M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front Comput Neurosci. 2015;9.
28.
go back to reference Tissera MD, McDonnell MD. Deep extreme learning machines: supervised autoencoding architecture for classification. Neurocomputing. 2016;174:42–9.CrossRef Tissera MD, McDonnell MD. Deep extreme learning machines: supervised autoencoding architecture for classification. Neurocomputing. 2016;174:42–9.CrossRef
29.
go back to reference Zhang M, Qu H, Xie X, Kurths J. Supervised learning in spiking neural networks with noise-threshold. Neurocomputing. 2017;219:333–49.CrossRef Zhang M, Qu H, Xie X, Kurths J. Supervised learning in spiking neural networks with noise-threshold. Neurocomputing. 2017;219:333–49.CrossRef
30.
go back to reference Eshraghian JK, Cho K, Zheng C, Nam M, Iu HH, Lei W, Eshraghian K. Neuromorphic vision hybrid rram-cmos architecture. IEEE Transact Very Large Scale Integr (VLSI) Syst. 2018;26(12):2816–2829. Eshraghian JK, Cho K, Zheng C, Nam M, Iu HH, Lei W, Eshraghian K. Neuromorphic vision hybrid rram-cmos architecture. IEEE Transact Very Large Scale Integr (VLSI) Syst. 2018;26(12):2816–2829.
31.
go back to reference Werginz P, Benav H, Zrenner E, Rattay F. Modeling the response of ON and OFF retinal bipolar cells during electric stimulation. Vision Res. 2015;111:170–81.CrossRef Werginz P, Benav H, Zrenner E, Rattay F. Modeling the response of ON and OFF retinal bipolar cells during electric stimulation. Vision Res. 2015;111:170–81.CrossRef
32.
go back to reference Fohlmeister JF, Coleman PA, Miller RF. Modeling the repetitive firing of retinal ganglion cells. Brain Res. 1990;510(2):343–5.CrossRef Fohlmeister JF, Coleman PA, Miller RF. Modeling the repetitive firing of retinal ganglion cells. Brain Res. 1990;510(2):343–5.CrossRef
33.
go back to reference Braitenberg V, Schüz A. Anatomy of the cortex: statistics and geometry. 2013;18. Springer Science & Business Media. Braitenberg V, Schüz A. Anatomy of the cortex: statistics and geometry. 2013;18. Springer Science & Business Media.
34.
go back to reference Tuckwell HC. Introduction to theoretical neurobiology: volume 2, nonlinear and stochastic theories. 2005;8. Cambridge University Press. Tuckwell HC. Introduction to theoretical neurobiology: volume 2, nonlinear and stochastic theories. 2005;8. Cambridge University Press.
35.
go back to reference Nazari S, Faez K. Establishing the flow of information between two bio-inspired spiking neural networks. Inf Sci. 2019;477:80–99.CrossRef Nazari S, Faez K. Establishing the flow of information between two bio-inspired spiking neural networks. Inf Sci. 2019;477:80–99.CrossRef
36.
go back to reference Ardakani A, Condo C, Gross WJ. Sparsely-connected neural networks: towards efficient VLSI implementation of deep neural networks. 2016. arXiv preprint arXiv:1611.01427. Ardakani A, Condo C, Gross WJ. Sparsely-connected neural networks: towards efficient VLSI implementation of deep neural networks. 2016. arXiv preprint arXiv:​1611.​01427.
37.
go back to reference Sjöström PJ, Turrigiano GG, Nelson SB. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron. 2001;32(6):1149–64.CrossRef Sjöström PJ, Turrigiano GG, Nelson SB. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron. 2001;32(6):1149–64.CrossRef
38.
go back to reference Holmgren C, Harkany T, Svennenfors B, Zilberter Y. Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J Physiol. 2003;551(1):139–53.CrossRef Holmgren C, Harkany T, Svennenfors B, Zilberter Y. Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J Physiol. 2003;551(1):139–53.CrossRef
39.
go back to reference Diaz C, Frias T, Sanchez G, Perez H, Toscano K, Duchen G. A novel parallel multiplier using spiking neural P systems with dendritic delays. Neurocomputing. 2017;239:113–21.CrossRef Diaz C, Frias T, Sanchez G, Perez H, Toscano K, Duchen G. A novel parallel multiplier using spiking neural P systems with dendritic delays. Neurocomputing. 2017;239:113–21.CrossRef
40.
go back to reference Chen Q, Wang J, Yang S, Qin Y, Deng B, Wei X. A real-time FPGA implementation of a biologically inspired central pattern generator network. Neurocomputing. 2017;244:63–80.CrossRef Chen Q, Wang J, Yang S, Qin Y, Deng B, Wei X. A real-time FPGA implementation of a biologically inspired central pattern generator network. Neurocomputing. 2017;244:63–80.CrossRef
41.
go back to reference Sidaty N, Larabi MC, Saadane A. Toward an audiovisual attention model for multimodal video content. Neurocomputing. 2017. Sidaty N, Larabi MC, Saadane A. Toward an audiovisual attention model for multimodal video content. Neurocomputing. 2017.
42.
go back to reference Eskandari E, Ahmadi A, Gomar S. Effect of spike-timing-dependent plasticity on neural assembly computing. Neurocomputing. 2016;191:107–16.CrossRef Eskandari E, Ahmadi A, Gomar S. Effect of spike-timing-dependent plasticity on neural assembly computing. Neurocomputing. 2016;191:107–16.CrossRef
43.
go back to reference Ferrández JM, Lorente V, de la Paz F, Fernández E. Training biological neural cultures: Towards Hebbian learning. Neurocomputing. 2013;114:3–8.CrossRef Ferrández JM, Lorente V, de la Paz F, Fernández E. Training biological neural cultures: Towards Hebbian learning. Neurocomputing. 2013;114:3–8.CrossRef
44.
go back to reference Bi GQ, Poo MM. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci. 1998;18(24):10464–72.CrossRef Bi GQ, Poo MM. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci. 1998;18(24):10464–72.CrossRef
45.
go back to reference Shepherd JD, Huganir RL. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu Rev Cell Dev Biol. 2007;23:613–43.CrossRef Shepherd JD, Huganir RL. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu Rev Cell Dev Biol. 2007;23:613–43.CrossRef
46.
go back to reference Darian-Smith C, Gilbert CD. Axonal sprouting accompanies functional reorganization in adult cat striate cortex. Nature. 1994;368(6473):737–40.CrossRef Darian-Smith C, Gilbert CD. Axonal sprouting accompanies functional reorganization in adult cat striate cortex. Nature. 1994;368(6473):737–40.CrossRef
47.
go back to reference Skangiel-Kramska J, Głażewski S, Jabłońska B, Siucińska E, Kossut M. Reduction of GABA A receptor binding of [3 H] muscimol in the barrel field of mice after peripheral denervation: transient and long-lasting effects. Exp Brain Res. 1994;100(1):39–46.CrossRef Skangiel-Kramska J, Głażewski S, Jabłońska B, Siucińska E, Kossut M. Reduction of GABA A receptor binding of [3 H] muscimol in the barrel field of mice after peripheral denervation: transient and long-lasting effects. Exp Brain Res. 1994;100(1):39–46.CrossRef
48.
go back to reference Sczesny-Kaiser M, Beckhaus K, Dinse HR, Schwenkreis P, Tegenthoff M, Höffken O. Repetitive transcranial direct current stimulation induced excitability changes of primary visual cortex and visual learning effects—a pilot study. Front Behavior Neurosci. 2016;10. Sczesny-Kaiser M, Beckhaus K, Dinse HR, Schwenkreis P, Tegenthoff M, Höffken O. Repetitive transcranial direct current stimulation induced excitability changes of primary visual cortex and visual learning effects—a pilot study. Front Behavior Neurosci. 2016;10.
49.
go back to reference Falcone B, Coffman BA, Clark VP, Parasuraman R. Transcranial direct current stimulation augments perceptual sensitivity and 24-hour retention in a complex threat detection task. PLoS ONE. 2012;7(4): e34993.CrossRef Falcone B, Coffman BA, Clark VP, Parasuraman R. Transcranial direct current stimulation augments perceptual sensitivity and 24-hour retention in a complex threat detection task. PLoS ONE. 2012;7(4): e34993.CrossRef
50.
go back to reference Coffman BA, Clark VP, Parasuraman R. Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage. 2014;85:895–908.CrossRef Coffman BA, Clark VP, Parasuraman R. Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage. 2014;85:895–908.CrossRef
51.
go back to reference O'Connor P, Neil D, Liu SC, Delbruck T, Pfeiffer M. Real-time classification and sensor fusion with a spiking deep belief network. Front Neurosci. 2013;7 O'Connor P, Neil D, Liu SC, Delbruck T, Pfeiffer M. Real-time classification and sensor fusion with a spiking deep belief network. Front Neurosci. 2013;7
52.
go back to reference Lin Z, Ma D, Meng J, Chen L. Relative ordering learning in spiking neural network for pattern recognition. Neurocomputing. 2017. Lin Z, Ma D, Meng J, Chen L. Relative ordering learning in spiking neural network for pattern recognition. Neurocomputing. 2017.
53.
go back to reference Brader JM, Senn W, Fusi S. Learning real-world stimuli in a neural network with spike-driven synaptic dynamics. Neural Comput. 2007;19(11):2881–912.MathSciNetMATHCrossRef Brader JM, Senn W, Fusi S. Learning real-world stimuli in a neural network with spike-driven synaptic dynamics. Neural Comput. 2007;19(11):2881–912.MathSciNetMATHCrossRef
54.
go back to reference Beyeler M, Dutt ND, Krichmar JL. Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule. Neural Netw. 2013;48:109–24.CrossRef Beyeler M, Dutt ND, Krichmar JL. Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule. Neural Netw. 2013;48:109–24.CrossRef
55.
go back to reference Querlioz D, Bichler O, Dollfus P, Gamrat C. Immunity to device variations in a spiking neural network with memristive nanodevices. IEEE Trans Nanotechnol. 2013;12(3):288–95.CrossRef Querlioz D, Bichler O, Dollfus P, Gamrat C. Immunity to device variations in a spiking neural network with memristive nanodevices. IEEE Trans Nanotechnol. 2013;12(3):288–95.CrossRef
56.
go back to reference Nazari S. Spiking pattern recognition using informative signal of image and unsupervised biologically plausible learning. Neurocomputing. 2019;330:196–211.CrossRef Nazari S. Spiking pattern recognition using informative signal of image and unsupervised biologically plausible learning. Neurocomputing. 2019;330:196–211.CrossRef
57.
go back to reference Jin Y, Zhang W, Li P. Hybrid macro/micro level backpropagation for training deep spiking neural networks. Adv Neural Inform Process Syst. 2018;31. Jin Y, Zhang W, Li P. Hybrid macro/micro level backpropagation for training deep spiking neural networks. Adv Neural Inform Process Syst. 2018;31.
58.
go back to reference Ngu HCV, Lee KM. Effective conversion of a convolutional neural network into a spiking neural network for image recognition tasks. Appl Sci. 2022;12(11):5749.CrossRef Ngu HCV, Lee KM. Effective conversion of a convolutional neural network into a spiking neural network for image recognition tasks. Appl Sci. 2022;12(11):5749.CrossRef
59.
go back to reference Lee C, Panda P, Srinivasan G, Roy K. Training deep spiking convolutional neural networks with stdp-based unsupervised pre-training followed by supervised fine-tuning. Front Neurosci. 2018;12:435.CrossRef Lee C, Panda P, Srinivasan G, Roy K. Training deep spiking convolutional neural networks with stdp-based unsupervised pre-training followed by supervised fine-tuning. Front Neurosci. 2018;12:435.CrossRef
60.
go back to reference Diehl PU, Neil D, Binas J, Cook M, Liu SC, Pfeiffer M. Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing. In 2015 International Joint Conference on Neural Networks (IJCNN) 2015. pp. 1–8. IEEE. Diehl PU, Neil D, Binas J, Cook M, Liu SC, Pfeiffer M. Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing. In 2015 International Joint Conference on Neural Networks (IJCNN) 2015. pp. 1–8. IEEE.
61.
go back to reference Wu Y, Deng L, Li G, Zhu J, Shi L. Spatio-temporal backpropagation for training high-performance spiking neural networks. Front Neurosci. 2018;12:331.CrossRef Wu Y, Deng L, Li G, Zhu J, Shi L. Spatio-temporal backpropagation for training high-performance spiking neural networks. Front Neurosci. 2018;12:331.CrossRef
62.
go back to reference Kheradpisheh SR, Ganjtabesh M, Thorpe SJ, Masquelier T. STDP-based spiking deep convolutional neural networks for object recognition. Neural Netw. 2018;99:56–67.CrossRef Kheradpisheh SR, Ganjtabesh M, Thorpe SJ, Masquelier T. STDP-based spiking deep convolutional neural networks for object recognition. Neural Netw. 2018;99:56–67.CrossRef
63.
go back to reference Tavanaei A, Maida A. BP-STDP: Approximating backpropagation using spike timing dependent plasticity. Neurocomputing. 2019;330:39–47.CrossRef Tavanaei A, Maida A. BP-STDP: Approximating backpropagation using spike timing dependent plasticity. Neurocomputing. 2019;330:39–47.CrossRef
64.
go back to reference Lee C, Srinivasan G, Panda P, Roy K. Deep spiking convolutional neural network trained with unsupervised spike-timing-dependent plasticity. IEEE Transactions on Cognitive and Developmental Systems. 2018;11(3):384–94. Lee C, Srinivasan G, Panda P, Roy K. Deep spiking convolutional neural network trained with unsupervised spike-timing-dependent plasticity. IEEE Transactions on Cognitive and Developmental Systems. 2018;11(3):384–94.
65.
go back to reference Ciresan DC, Meier U, Gambardella LM, Schmidhuber J. Convolutional neural network committees for handwritten character classification. In 2011 International conference on document analysis and recognition, Beijing, China. 2011. pp. 1135-1139. Ciresan DC, Meier U, Gambardella LM, Schmidhuber J. Convolutional neural network committees for handwritten character classification. In 2011 International conference on document analysis and recognition, Beijing, China. 2011. pp. 1135-1139.
67.
go back to reference Cavalin P, Oliveira L. Confusion matrix-based building of hierarchical classification. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications; Lecture Notes in Computer Science; Springer: Berlin, Germany. 2019;11401:271–278. Cavalin P, Oliveira L. Confusion matrix-based building of hierarchical classification. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications; Lecture Notes in Computer Science; Springer: Berlin, Germany. 2019;11401:271–278.
68.
go back to reference Singh S, Paul A, Arun M. Parallelization of digit recognition system using Deep Convolutional Neural Network on CUDA. In Proceedings of the 2017 Third International Conference on Sensing, Signal Processing and Security, Chennai, India. 4–5 May 2017. pp. 379–383. Singh S, Paul A, Arun M. Parallelization of digit recognition system using Deep Convolutional Neural Network on CUDA. In Proceedings of the 2017 Third International Conference on Sensing, Signal Processing and Security, Chennai, India. 4–5 May 2017. pp. 379–383.
69.
go back to reference Baldominos A, Saez Y, Isasi P. Hybridizing evolutionary computation and deep neural networks: an approach to handwriting recognition using committees and transfer learning. Complexity 2019. 2019;2952304. Baldominos A, Saez Y, Isasi P. Hybridizing evolutionary computation and deep neural networks: an approach to handwriting recognition using committees and transfer learning. Complexity 2019. 2019;2952304.
70.
go back to reference Peng Y, Yin H. Markov random field based convolutional neuralx networks for image classification. In IDEAL 2017: Intelligent Data Engineering and Automated Learning; Lecture Notes in Computer Science; Yin H, Gao Y, Chen S, Wen Y, Cai G, Gu T, Du J, Tallón-Ballesteros A, Zhang M, editors. Springer: Guilin, China. 2017;10585:387–396. Peng Y, Yin H. Markov random field based convolutional neuralx networks for image classification. In IDEAL 2017: Intelligent Data Engineering and Automated Learning; Lecture Notes in Computer Science; Yin H, Gao Y, Chen S, Wen Y, Cai G, Gu T, Du J, Tallón-Ballesteros A, Zhang M, editors. Springer: Guilin, China. 2017;10585:387–396.
71.
go back to reference Sabour S, Frosst N, Hinton GE. Dynamic routing between capsules. In Advances in Neural Information Processing Systems 30; NIPS Proceedings; Neural Information Processing Systems Foundation, Inc.: San Diego, CA, USA. 2017. pp. 548–556. Sabour S, Frosst N, Hinton GE. Dynamic routing between capsules. In Advances in Neural Information Processing Systems 30; NIPS Proceedings; Neural Information Processing Systems Foundation, Inc.: San Diego, CA, USA. 2017. pp. 548–556.
72.
go back to reference Kabir HD, Abdar M, Khosravi A, Jalali SMJ, Atiya AF, Nahavandi S, Srinivasan D. Spinalnet: Deep neural network with gradual input. IEEE Transact Artif Intell. 2022. Kabir HD, Abdar M, Khosravi A, Jalali SMJ, Atiya AF, Nahavandi S, Srinivasan D. Spinalnet: Deep neural network with gradual input. IEEE Transact Artif Intell. 2022.
73.
go back to reference Vaila R, Chiasson J, Saxena V. A deep unsupervised feature learning spiking neural network with binarized classification layers for the EMNIST classification. IEEE Transact Emerg Topics Comput Intell. 2020. Vaila R, Chiasson J, Saxena V. A deep unsupervised feature learning spiking neural network with binarized classification layers for the EMNIST classification. IEEE Transact Emerg Topics Comput Intell. 2020.
74.
go back to reference Baldominos A, Saez Y, Isasi P. A survey of handwritten character recognition with mnist and emnist. Appl Sci. 2019;9(15):3169.CrossRef Baldominos A, Saez Y, Isasi P. A survey of handwritten character recognition with mnist and emnist. Appl Sci. 2019;9(15):3169.CrossRef
75.
go back to reference Neftci E, Das S, Pedroni B, Kreutz-Delgado K, Cauwenberghs G. Event-driven contrastive divergence for spiking neuromorphic systems. 2013. Neftci E, Das S, Pedroni B, Kreutz-Delgado K, Cauwenberghs G. Event-driven contrastive divergence for spiking neuromorphic systems. 2013.
76.
go back to reference Uçar MK, Nour M, Sindi H, Polat K. The effect of training and testing process on machine learning in biomedical datasets. Math Probl Eng. 2020 Uçar MK, Nour M, Sindi H, Polat K. The effect of training and testing process on machine learning in biomedical datasets. Math Probl Eng. 2020
77.
go back to reference Sengupta A, Ye Y, Wang R, Liu C, Roy K. Going deeper in spiking neural networks: VGG and residual architectures. Front Neurosci. 2019;13:95.CrossRef Sengupta A, Ye Y, Wang R, Liu C, Roy K. Going deeper in spiking neural networks: VGG and residual architectures. Front Neurosci. 2019;13:95.CrossRef
78.
go back to reference Rueckauer B, Lungu IA, Hu Y, Pfeiffer M, Liu SC. Conversion of continuous-valued deep networks to efficient event-driven networks for image classification. Front Neurosci. 2017;11:682.CrossRef Rueckauer B, Lungu IA, Hu Y, Pfeiffer M, Liu SC. Conversion of continuous-valued deep networks to efficient event-driven networks for image classification. Front Neurosci. 2017;11:682.CrossRef
79.
go back to reference Rathi N, Srinivasan G, Panda P, Roy K. Enabling deep spiking neural networks with hybrid conversion and spike timing dependent backpropagation. 2020. arXiv preprint arXiv:2005.01807. Rathi N, Srinivasan G, Panda P, Roy K. Enabling deep spiking neural networks with hybrid conversion and spike timing dependent backpropagation. 2020. arXiv preprint arXiv:​2005.​01807.
80.
go back to reference Nazari S, Faez K, Janahmadi M. A new approach to detect the coding rule of the cortical spiking model in the information transmission. Neural Netw. 2018;99:68–78.CrossRef Nazari S, Faez K, Janahmadi M. A new approach to detect the coding rule of the cortical spiking model in the information transmission. Neural Netw. 2018;99:68–78.CrossRef
81.
go back to reference Martin SJ, Grimwood PD, Morris RG. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci. 2000;23(1):649–711.CrossRef Martin SJ, Grimwood PD, Morris RG. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci. 2000;23(1):649–711.CrossRef
82.
go back to reference Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron. 2004;44(1):5–21.CrossRef Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron. 2004;44(1):5–21.CrossRef
Metadata
Title
A Novel Unsupervised Spatial–Temporal Learning Mechanism in a Bio-inspired Spiking Neural Network
Authors
Masoud Amiri
Amir Homayoun Jafari‬
Bahador Makkiabadi
Soheila Nazari
Publication date
16-12-2022
Publisher
Springer US
Published in
Cognitive Computation / Issue 2/2023
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-022-10097-1

Other articles of this Issue 2/2023

Cognitive Computation 2/2023 Go to the issue

Premium Partner