Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

22-11-2018 | Focus | Issue 8/2019

Soft Computing 8/2019

A novel vessel detection and classification algorithm using a deep learning neural network model with morphological processing (M-DLNN)

Journal:
Soft Computing > Issue 8/2019
Authors:
S. Iwin Thanakumar Joseph, J. Sasikala, D. Sujitha Juliet
Important notes
Communicated by P. Pandian.

Abstract

In recent times, optical satellite images are gaining widespread significance due to its feasibility and compatibility with laser images to improve the contrast of the obtained image. Optical satellite images find numerous applications in object detection and tracking out of which ship detection and tracking is a quite significant field to be researched. A novel ship detection and tracking algorithm has been proposed and implemented in this research article and tested over a wide range of climatic conditions to quantify the efficiency of the proposed work. The proposed algorithm defines morphological traits of the object under study which is the ship in this case as its attributes to segment and detect the object. An input video sequence obtained from the optical imaging system is used as input in the proposed work and efficiency justified in terms of accuracy, precision and classification rates. A morphological deep learning neural network has been proposed in this research article which automates the function of both detection based on morphological attributes of the vessel under study and classifying the detected vessels into their constituent classes. The obtained results have been compared with recent and existing vessel detection algorithms like singular-value decomposition, salient mapping techniques and local binary pattern-based techniques.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 8/2019

Soft Computing 8/2019 Go to the issue

Premium Partner

    Image Credits