Skip to main content
Top
Published in:

27-04-2022 | Original Article

A numerical approach for optimization of the working fluid of a standing-wave thermo-acoustic refrigerator

Authors: R. Rahpeima, R. Ebrahimi

Published in: Engineering with Computers | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The development of refrigeration systems using thermo-acoustic technology is a novel solution for achieving environmentally friendly refrigerators. A full transient CFD method is introduced here that can resemble the whole thermo-acoustic phenomena along with its different governing physics as a whole. The working fluid contributes critically to the thermo-acoustic refrigerators’ cooling performance. In this paper, unlike previous researches, all different possible combinations of noble gases are considered and the performance of the refrigerator from both aspects of cooling temperature and \({\mathrm{COP}}_{\mathrm{R}}\) are investigated to determine the optimized gas mixture among all combinations. For this purpose, the effect of the sound intensity and the fluid’s Prandtl number as two key factors are investigated on the refrigeration performance. By considering a 2D-axisymmetric computational geometry resembling the real model, it is tried to attain results as reliable as possible. COMSOL software is used to perform the simulations. It is concluded that from the aspect of the cooling temperature, a sample with the highest sound intensity (pure He sample in this research) is the best. But, from the aspect of a higher \({\mathrm{COP}}_{\mathrm{R}}\) (relative coefficient of performance), a sample with the lowest Pr number (72%He–28%Xe sample in this research) would be the best. The lowest cooling temperature which is achieved by the pure He sample was about 273 K and the highest \({\mathrm{COP}}_{\mathrm{R}}\) which belongs to 72%He–28%Xe sample was approximately 0.335.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Shipboard Electronics Thermoacoustic Chiller.
 
2
Thermoacoustically Driven Thermoacoustic Refrigerator.
 
3
Relative coefficient of performance.
 
Literature
1.
2.
go back to reference Swift GW (1988) Thermoacoustic engines. J Acoust Soc Am 84(4):1145–1180 Swift GW (1988) Thermoacoustic engines. J Acoust Soc Am 84(4):1145–1180
3.
go back to reference Rott N (1975) Thermally driven acoustic oscillations, part III: Second-order heat flux. Zeitschrift für angewandte Mathematik und Physik ZAMP 26(1):43–49 Rott N (1975) Thermally driven acoustic oscillations, part III: Second-order heat flux. Zeitschrift für angewandte Mathematik und Physik ZAMP 26(1):43–49
4.
go back to reference Jin T et al (2015) Thermoacoustic prime movers and refrigerators: thermally powered engines without moving components. Energy 93:828–853 Jin T et al (2015) Thermoacoustic prime movers and refrigerators: thermally powered engines without moving components. Energy 93:828–853
5.
go back to reference Wheatley J et al (1983) An intrinsically irreversible thermoacoustic heat engine. J Acoust Soc Am 74(1):153–170 Wheatley J et al (1983) An intrinsically irreversible thermoacoustic heat engine. J Acoust Soc Am 74(1):153–170
6.
go back to reference Garrett SL, Adeff JA, Hofler TJ (1993) Thermoacoustic refrigerator for space applications. J Thermophys Heat Transfer 7(4):595–599 Garrett SL, Adeff JA, Hofler TJ (1993) Thermoacoustic refrigerator for space applications. J Thermophys Heat Transfer 7(4):595–599
7.
go back to reference Ballister SC, McKelvey DJ (1995) Shipboard electronics thermoacoustic cooler. Naval Postgraduate School Monterey CA. Ballister SC, McKelvey DJ (1995) Shipboard electronics thermoacoustic cooler. Naval Postgraduate School Monterey CA.
8.
go back to reference Adeff JA, Hofler TJ (2000) Design and construction of a solar-powdered, thermoacoustically driven, thermoacoustic refrigerator. J Acoust Soc Am 107(6):L37–L42 Adeff JA, Hofler TJ (2000) Design and construction of a solar-powdered, thermoacoustically driven, thermoacoustic refrigerator. J Acoust Soc Am 107(6):L37–L42
9.
go back to reference Berson A et al (2011) Nonlinear temperature field near the stack ends of a standing-wave thermoacoustic refrigerator. Int J Heat Mass Transf 54(21):4730–4735MATH Berson A et al (2011) Nonlinear temperature field near the stack ends of a standing-wave thermoacoustic refrigerator. Int J Heat Mass Transf 54(21):4730–4735MATH
10.
go back to reference Yahya SG, Mao X, Jaworski AJ (2017) Experimental investigation of thermal performance of random stack materials for use in standing wave thermoacoustic refrigerators. Int J Refrig 75:52–63 Yahya SG, Mao X, Jaworski AJ (2017) Experimental investigation of thermal performance of random stack materials for use in standing wave thermoacoustic refrigerators. Int J Refrig 75:52–63
11.
go back to reference Raut AS, Wankhede US, Ramteke S (2019) Experimental study on the performance of standing wave thermoacoustic refrigeration system. Smart technologies for energy, environment and sustainable development. Springer, pp 635–641 Raut AS, Wankhede US, Ramteke S (2019) Experimental study on the performance of standing wave thermoacoustic refrigeration system. Smart technologies for energy, environment and sustainable development. Springer, pp 635–641
12.
go back to reference Alamir MA (2019) Experimental study of the stack geometric parameters effect on the resonance frequency of a standing wave thermoacoustic refrigerator. Int J Green Energy 16(8):639–651 Alamir MA (2019) Experimental study of the stack geometric parameters effect on the resonance frequency of a standing wave thermoacoustic refrigerator. Int J Green Energy 16(8):639–651
13.
go back to reference Wetzel M, Herman C (1997) Design optimization of thermoacoustic refrigerators. Int J Refrig 20(1):3–21 Wetzel M, Herman C (1997) Design optimization of thermoacoustic refrigerators. Int J Refrig 20(1):3–21
14.
go back to reference Herman C, Lavin C, Trávníček ZK (2008) Performance of thermoacoustic refrigerators: cooling load and coefficient of performance. In: ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. American Society of Mechanical Engineers Herman C, Lavin C, Trávníček ZK (2008) Performance of thermoacoustic refrigerators: cooling load and coefficient of performance. In: ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. American Society of Mechanical Engineers
15.
go back to reference Marx D, Blanc-Benon P (2004) Numerical simulation of stack-heat exchangers coupling in a thermoacoustic refrigerator. AIAA J 42(7):1338MATH Marx D, Blanc-Benon P (2004) Numerical simulation of stack-heat exchangers coupling in a thermoacoustic refrigerator. AIAA J 42(7):1338MATH
16.
go back to reference Marx D, Blanc-Benon P (2005) Computation of the temperature distortion in the stack of a standing-wave thermoacoustic refrigerator. J Acoust Soc Am 118(5):2993–2999 Marx D, Blanc-Benon P (2005) Computation of the temperature distortion in the stack of a standing-wave thermoacoustic refrigerator. J Acoust Soc Am 118(5):2993–2999
17.
go back to reference Jin T et al (2016) Acoustic field characteristics and performance analysis of a looped travelling-wave thermoacoustic refrigerator. Energy Convers Manage 123:243–251 Jin T et al (2016) Acoustic field characteristics and performance analysis of a looped travelling-wave thermoacoustic refrigerator. Energy Convers Manage 123:243–251
18.
go back to reference Gholamrezaei M, Ghorbanian K (2016) Thermal analysis of shell-and-tube thermoacoustic heat exchangers. Entropy 18(8):301 Gholamrezaei M, Ghorbanian K (2016) Thermal analysis of shell-and-tube thermoacoustic heat exchangers. Entropy 18(8):301
19.
go back to reference Mergen S, Yıldırım E, Turkoglu H (2019) Numerical study on effects of computational domain length on flow field in standing wave thermoacoustic couple. Cryogenics 98:139–147 Mergen S, Yıldırım E, Turkoglu H (2019) Numerical study on effects of computational domain length on flow field in standing wave thermoacoustic couple. Cryogenics 98:139–147
20.
go back to reference Rahpeima R, Ebrahimi R (2019) Numerical investigation of the effect of stack geometrical parameters and thermo-physical properties on performance of a standing wave thermoacoustic refrigerator. Appl Therm Eng 149:1203–1214 Rahpeima R, Ebrahimi R (2019) Numerical investigation of the effect of stack geometrical parameters and thermo-physical properties on performance of a standing wave thermoacoustic refrigerator. Appl Therm Eng 149:1203–1214
21.
go back to reference Alamir MA, Elamer AA (2020) A compromise between the temperature difference and performance in a standing wave thermoacoustic refrigerator. Int J Ambient Energy 41(13):1441–1453 Alamir MA, Elamer AA (2020) A compromise between the temperature difference and performance in a standing wave thermoacoustic refrigerator. Int J Ambient Energy 41(13):1441–1453
22.
go back to reference Miled O, Dhahri H, Mhimid A (2020) Numerical investigation of porous stack for a solar-powered thermoacoustic refrigerator. Adv Mech Eng 12(6):1–14 Miled O, Dhahri H, Mhimid A (2020) Numerical investigation of porous stack for a solar-powered thermoacoustic refrigerator. Adv Mech Eng 12(6):1–14
23.
go back to reference Abbaszadeh M, Dehghan M (2020) Simulation flows with multiple phases and components via the radial basis functions-finite difference (RBF-FD) procedure: Shan-Chen model. Eng Anal Boundary Elem 119:151–161MathSciNetMATH Abbaszadeh M, Dehghan M (2020) Simulation flows with multiple phases and components via the radial basis functions-finite difference (RBF-FD) procedure: Shan-Chen model. Eng Anal Boundary Elem 119:151–161MathSciNetMATH
24.
go back to reference Mohammadi V, Dehghan M (2020) A meshless technique based on generalized moving least squares combined with the second-order semi-implicit backward differential formula for numerically solving time-dependent phase field models on the spheres. Appl Numer Math 153:248–275MathSciNetMATH Mohammadi V, Dehghan M (2020) A meshless technique based on generalized moving least squares combined with the second-order semi-implicit backward differential formula for numerically solving time-dependent phase field models on the spheres. Appl Numer Math 153:248–275MathSciNetMATH
25.
go back to reference Abbaszadeh M, Dehghan M (2020) Direct meshless local Petrov-Galerkin method to investigate anisotropic potential and plane elastostatic equations of anisotropic functionally graded materials problems. Eng Anal Boundary Elem 118:188–201MathSciNetMATH Abbaszadeh M, Dehghan M (2020) Direct meshless local Petrov-Galerkin method to investigate anisotropic potential and plane elastostatic equations of anisotropic functionally graded materials problems. Eng Anal Boundary Elem 118:188–201MathSciNetMATH
27.
go back to reference Ward WC, Swift GW (1994) Design environment for low-amplitude thermoacoustic engines. J Acoust Soc Am 95(6):3671–3672 Ward WC, Swift GW (1994) Design environment for low-amplitude thermoacoustic engines. J Acoust Soc Am 95(6):3671–3672
28.
go back to reference Watanabe M, Prosperetti A, Yuan H (1997) A simplified model for linear and nonlinear processes in thermoacoustic prime movers. Part I. Model and linear theory. J Acoust Soc Am 102(6):3484–3496 Watanabe M, Prosperetti A, Yuan H (1997) A simplified model for linear and nonlinear processes in thermoacoustic prime movers. Part I. Model and linear theory. J Acoust Soc Am 102(6):3484–3496
29.
go back to reference Yuan H, Karpov S, Prosperetti A (1997) A simplified model for linear and nonlinear processes in thermoacoustic prime movers. Part II. Nonlinear oscillations. J Acoust Soc Am 102(6):3497–3506 Yuan H, Karpov S, Prosperetti A (1997) A simplified model for linear and nonlinear processes in thermoacoustic prime movers. Part II. Nonlinear oscillations. J Acoust Soc Am 102(6):3497–3506
30.
go back to reference Salih A (2011) Conservation equations of fluid dynamics. Department of Aerospace Engineering Indian Institute of Space Science and Technology, Thiruvananthapuram Salih A (2011) Conservation equations of fluid dynamics. Department of Aerospace Engineering Indian Institute of Space Science and Technology, Thiruvananthapuram
31.
go back to reference Dalton J (1802) On the expansion of elastic fluids by heat. J Nat Philos Chemis Arts 3:130–134 Dalton J (1802) On the expansion of elastic fluids by heat. J Nat Philos Chemis Arts 3:130–134
32.
go back to reference Silberberg M (2018) Chemistry: the molecular nature of matter and change with advanced topics. McGraw-Hill, New York Silberberg M (2018) Chemistry: the molecular nature of matter and change with advanced topics. McGraw-Hill, New York
33.
go back to reference Davidson TA (1993) A simple and accurate method for calculating viscosity of gaseous mixtures. US Department of the Interior, Bureau of Mines Davidson TA (1993) A simple and accurate method for calculating viscosity of gaseous mixtures. US Department of the Interior, Bureau of Mines
34.
go back to reference Gray P, Wright P (1961) The thermal conductivity of mixtures of nitrogen, ammonia and hydrogen. Proc R Soc Lond Series A 263(1313):161–188 Gray P, Wright P (1961) The thermal conductivity of mixtures of nitrogen, ammonia and hydrogen. Proc R Soc Lond Series A 263(1313):161–188
35.
go back to reference Wassiljewa A (1904) Heat conduction in gas mixtures. Physikalische Zeitschrift 5(22):737–742MATH Wassiljewa A (1904) Heat conduction in gas mixtures. Physikalische Zeitschrift 5(22):737–742MATH
36.
go back to reference Mason E, Saxena S (1958) Approximate formula for the thermal conductivity of gas mixtures. Phys fluids 1(5):361–369MathSciNet Mason E, Saxena S (1958) Approximate formula for the thermal conductivity of gas mixtures. Phys fluids 1(5):361–369MathSciNet
37.
go back to reference Sutherland W (1893) LII. The viscosity of gases and molecular force. Lond Edinburgh Dublin Philos Mag J Sci 36(223):507–531MATH Sutherland W (1893) LII. The viscosity of gases and molecular force. Lond Edinburgh Dublin Philos Mag J Sci 36(223):507–531MATH
38.
go back to reference Russell DA, Weibull P (2002) Tabletop thermoacoustic refrigerator for demonstrations. Am J Phys 70(12):1231–1233 Russell DA, Weibull P (2002) Tabletop thermoacoustic refrigerator for demonstrations. Am J Phys 70(12):1231–1233
39.
go back to reference Pedagopu VM, Pattapu K (2013) A novel approach to design and fabrication of thermo-acoustic refrigerator using high amplitude sound waves. IOSR J Mech Civ Eng 8: 15–24 Pedagopu VM, Pattapu K (2013) A novel approach to design and fabrication of thermo-acoustic refrigerator using high amplitude sound waves. IOSR J Mech Civ Eng 8: 15–24
40.
go back to reference Belcher JR et al (1999) Working gases in thermoacoustic engines. J Acoust Soc Am 105(5):2677–2684 Belcher JR et al (1999) Working gases in thermoacoustic engines. J Acoust Soc Am 105(5):2677–2684
41.
go back to reference Tijani M, Zeegers J, De Waele A (2002) Prandtl number and thermoacoustic refrigerators. J Acoust Soc Am 112(1):134–143 Tijani M, Zeegers J, De Waele A (2002) Prandtl number and thermoacoustic refrigerators. J Acoust Soc Am 112(1):134–143
43.
go back to reference Hilsenrath J (1955) Tables of thermal properties of gases: comprising tables of thermodynamic and transport properties of air, argon, carbon dioxide, carbon monoxide, hydrogen, nitrogen, oxygen, and steam. 564. US Govt. Print. Off. Hilsenrath J (1955) Tables of thermal properties of gases: comprising tables of thermodynamic and transport properties of air, argon, carbon dioxide, carbon monoxide, hydrogen, nitrogen, oxygen, and steam. 564. US Govt. Print. Off.
44.
go back to reference Yaws CL (1995) Handbook of transport property data: viscosity, thermal conductivity, and diffusion coefficients of liquids and gases.: Inst of Chemical Engineers. Yaws CL (1995) Handbook of transport property data: viscosity, thermal conductivity, and diffusion coefficients of liquids and gases.: Inst of Chemical Engineers.
45.
go back to reference Reid RC, JM Prausnitz and BE Poling (1987) The properties of gases and liquids, 4th edition, McGraw-Hill Reid RC, JM Prausnitz and BE Poling (1987) The properties of gases and liquids, 4th edition, McGraw-Hill
46.
go back to reference Hirota K (1944) The quantum mechanical treatment of viscosity by use of the rigid elastic sphere model. II. The Sutherland constant. Bull Chem Soc Jpn 19(5):109–113MathSciNet Hirota K (1944) The quantum mechanical treatment of viscosity by use of the rigid elastic sphere model. II. The Sutherland constant. Bull Chem Soc Jpn 19(5):109–113MathSciNet
47.
go back to reference Tan Z (2014) Air pollution and greenhouse gases: from basic concepts to engineering applications for air emission control. Springer, New York Tan Z (2014) Air pollution and greenhouse gases: from basic concepts to engineering applications for air emission control. Springer, New York
48.
go back to reference Dua S et al (1994) Gravitational transport of particles in pure gases and gas mixtures. Aerosol Sci Technol 21(2):170–178 Dua S et al (1994) Gravitational transport of particles in pure gases and gas mixtures. Aerosol Sci Technol 21(2):170–178
49.
go back to reference Kim J (2014) Architectural Acoustics. Sejin Co Kim J (2014) Architectural Acoustics. Sejin Co
50.
go back to reference Films DT (2003) Mylar polyester film physical-thermal properties. DuPont Teijin Films, Hopewell Films DT (2003) Mylar polyester film physical-thermal properties. DuPont Teijin Films, Hopewell
53.
go back to reference Fox RW, McDonald AT, Mitchell JW (2020) Fox and McDonald’s introduction to fluid mechanics. John Wiley & Sons, Hoboken Fox RW, McDonald AT, Mitchell JW (2020) Fox and McDonald’s introduction to fluid mechanics. John Wiley & Sons, Hoboken
55.
go back to reference Ishikawa H, Mee DJ (2002) Numerical investigations of flow and energy fields near a thermoacoustic couple. J Acoust Soc Am 111(2):831–839 Ishikawa H, Mee DJ (2002) Numerical investigations of flow and energy fields near a thermoacoustic couple. J Acoust Soc Am 111(2):831–839
Metadata
Title
A numerical approach for optimization of the working fluid of a standing-wave thermo-acoustic refrigerator
Authors
R. Rahpeima
R. Ebrahimi
Publication date
27-04-2022
Publisher
Springer London
Published in
Engineering with Computers / Issue 4/2023
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-022-01646-1