Skip to main content
Top
Published in:

01-12-2020 | Original Article

A numerical evaluation of the accuracy of influence maximization algorithms

Authors: Hautahi Kingi, Li-An Daniel Wang, Tom Shafer, Minh Huynh, Mike Trinh, Aaron Heuser, George Rochester, Antonio Paredes

Published in: Social Network Analysis and Mining | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We develop an algorithm to compute exact solutions to the influence maximization problem using concepts from reverse influence sampling (RIS). We implement the algorithm using GPU resources to evaluate the empirical accuracy of theoretically guaranteed greedy and RIS approximate solutions. We find that the approximations yield solutions that are remarkably close to optimal—usually achieving greater than 99% of the optimal influence spread. This accuracy is consistent across a wide range of network structures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
“Exact” solutions in this article will technically be \((1-\epsilon )\) approximations, which is consistent with the use of that term in much of the literature (Li et al. 2017, 2019).
 
2
We assume \(p_e=p\), \(\forall e\) throughout.
 
3
This is Lemma 1 in, for example, Huang et al. (2017).
 
4
The value of \(\theta \) determines both the runtime of the algorithm and \(\epsilon \). However, the relationship between \(\theta \) and \(\epsilon \) is a function of the optimal solution, as shown in Theorem 1. The literature has focused on determining increasingly tighter values of \(\theta \) to reduce the runtime through various techniques like limiting the total number of edges examined during the generation process to a pre-defined threshold (Borgs et al. 2014), using Chernoff bounds (Tang et al. 2014) and adopting martingale methods (Tang et al. 2015), among others (Nguyen et al. 2016; Huang et al. 2017). We focus on the two computational steps common to all RIS methods and set \(\theta =100{,}000\). Because this affects both the approximate and exact solutions equally, the proportional difference between the solutions is approximately independent of \(\theta \) so long as it ensures \(\epsilon<< e\), which it trivially does.
 
5
Examples of various versions of this lemma in the literature are Lemma 3 in Tang et al. (2014), Lemma 3 in Tang et al. (2015), and Lemma 5 in Nguyen et al. (2016).
 
6
The \(\beta =1\) version is not identical to the Erdős–Rényi model because it enforces each node to have at least K/2 connections, whereas there is no restriction on edges for a given node in Erdős–Rényi.
 
7
The Python code to generate all results is available at https://​github.​com/​hautahi/​IM-Evaluation.
 
Literature
go back to reference Akbarpour M, Malladi S, Saberi A (2018) Diffusion, seeding, and the value of network information. In: Proceedings of the 2018 ACM conference on economics and computation. ACM, pp 641–641 Akbarpour M, Malladi S, Saberi A (2018) Diffusion, seeding, and the value of network information. In: Proceedings of the 2018 ACM conference on economics and computation. ACM, pp 641–641
go back to reference Albert R, Jeong H, Barabási A-L (2000) Error and attack tolerance of complex networks. Nature 406(6794):378CrossRef Albert R, Jeong H, Barabási A-L (2000) Error and attack tolerance of complex networks. Nature 406(6794):378CrossRef
go back to reference Bader DA, Madduri K (2008) Snap, small-world network analysis and partitioning: an open-source parallel graph framework for the exploration of large-scale networks. In: 2008 IEEE international symposium on parallel and distributed processing. IEEE, pp 1–12 Bader DA, Madduri K (2008) Snap, small-world network analysis and partitioning: an open-source parallel graph framework for the exploration of large-scale networks. In: 2008 IEEE international symposium on parallel and distributed processing. IEEE, pp 1–12
go back to reference Barnat J, Bauch P, Brim L, Ceska M (2011) Computing strongly connected components in parallel on cuda. IEEE Int Parallel Distrib Process Sympos 2011:544–555 Barnat J, Bauch P, Brim L, Ceska M (2011) Computing strongly connected components in parallel on cuda. IEEE Int Parallel Distrib Process Sympos 2011:544–555
go back to reference Basaras P, Katsaros D (2019) Identifying influential spreaders in complex networks with probabilistic links. In: Social networks and surveillance for society. Springer, Cham, pp 57–84CrossRef Basaras P, Katsaros D (2019) Identifying influential spreaders in complex networks with probabilistic links. In: Social networks and surveillance for society. Springer, Cham, pp 57–84CrossRef
go back to reference Borgs C, Brautbar M, Chayes J, Lucier B (2014) Maximizing social influence in nearly optimal time. In: Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete algorithms. SIAM, pp 946–957 Borgs C, Brautbar M, Chayes J, Lucier B (2014) Maximizing social influence in nearly optimal time. In: Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete algorithms. SIAM, pp 946–957
go back to reference Chen W, Wang Y, Yang S (2009) Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 199–208 Chen W, Wang Y, Yang S (2009) Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 199–208
go back to reference Chen W, Wang C, Wang Y (2010) Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 1029–1038 Chen W, Wang C, Wang Y (2010) Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 1029–1038
go back to reference Chen D-B, Xiao R, Zeng A (2014) Predicting the evolution of spreading on complex networks. Sci Rep 4:6108CrossRef Chen D-B, Xiao R, Zeng A (2014) Predicting the evolution of spreading on complex networks. Sci Rep 4:6108CrossRef
go back to reference Cohen R, Erez K, Ben-Avraham D, Havlin S (2000) Resilience of the internet to random breakdowns. Phys Rev Lett 85(21):4626CrossRef Cohen R, Erez K, Ben-Avraham D, Havlin S (2000) Resilience of the internet to random breakdowns. Phys Rev Lett 85(21):4626CrossRef
go back to reference Domingos P, Richardson M (2001) Mining the network value of customers. In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 57–66 Domingos P, Richardson M (2001) Mining the network value of customers. In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 57–66
go back to reference Domingos P, Richardson M (2002) Mining knowledge-sharing sites for viral marketing. In: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 61–70 Domingos P, Richardson M (2002) Mining knowledge-sharing sites for viral marketing. In: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 61–70
go back to reference Emami N, Mozafari N, Hamzeh A (2018) Continuous state online influence maximization in social network. Soc Netw Anal Min 8(1):32CrossRef Emami N, Mozafari N, Hamzeh A (2018) Continuous state online influence maximization in social network. Soc Netw Anal Min 8(1):32CrossRef
go back to reference Erdős P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5(1):17–60MathSciNetMATH Erdős P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5(1):17–60MathSciNetMATH
go back to reference Galhotra S, Arora A, Roy S (2016) Holistic influence maximization: combining scalability and efficiency with opinion-aware models. In: Proceedings of the 2016 international conference on management of data. ACM, pp 743–758 Galhotra S, Arora A, Roy S (2016) Holistic influence maximization: combining scalability and efficiency with opinion-aware models. In: Proceedings of the 2016 international conference on management of data. ACM, pp 743–758
go back to reference Goyal A, Lu W, Lakshmanan LV (2011) Celf++: optimizing the greedy algorithm for influence maximization in social networks. In: Proceedings of the 20th international conference companion on world wide web. ACM, pp 47–48 Goyal A, Lu W, Lakshmanan LV (2011) Celf++: optimizing the greedy algorithm for influence maximization in social networks. In: Proceedings of the 20th international conference companion on world wide web. ACM, pp 47–48
go back to reference Harish P, Narayanan P (2007) Accelerating large graph algorithms on the GPU using CUDA. In: International conference on high-performance computing. Springer, pp 197–208 Harish P, Narayanan P (2007) Accelerating large graph algorithms on the GPU using CUDA. In: International conference on high-performance computing. Springer, pp 197–208
go back to reference He X, Kempe D (2016) Robust influence maximization. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 885–894 He X, Kempe D (2016) Robust influence maximization. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 885–894
go back to reference Huang K, Wang S, Bevilacqua G, Xiao X, Lakshmanan L (2017) Revisiting the stop-and-stare algorithms for influence maximization. Proc VLDB Endow 10:913–924CrossRef Huang K, Wang S, Bevilacqua G, Xiao X, Lakshmanan L (2017) Revisiting the stop-and-stare algorithms for influence maximization. Proc VLDB Endow 10:913–924CrossRef
go back to reference Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 137–146 Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 137–146
go back to reference Kim J, Kim SK, Yu H (2013) Scalable and parallelizable processing of influence maximization for large-scale social networks? In: IEEE 29th international conference on data engineering (ICDE). IEEE, pp 266–277 Kim J, Kim SK, Yu H (2013) Scalable and parallelizable processing of influence maximization for large-scale social networks? In: IEEE 29th international conference on data engineering (ICDE). IEEE, pp 266–277
go back to reference LaSalle D, Karypis G (2013) Multi-threaded graph partitioning. In: IEEE 27th international symposium on parallel and distributed processing. IEEE, pp 225–236 LaSalle D, Karypis G (2013) Multi-threaded graph partitioning. In: IEEE 27th international symposium on parallel and distributed processing. IEEE, pp 225–236
go back to reference Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N (2007) Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 420–429 Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N (2007) Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 420–429
go back to reference Li X, Smith JD, Dinh TN, Thai MT (2017) Why approximate when you can get the exact? Optimal targeted viral marketing at scale. In: IEEE INFOCOM 2017-IEEE conference on computer communications. IEEE, pp 1–9 Li X, Smith JD, Dinh TN, Thai MT (2017) Why approximate when you can get the exact? Optimal targeted viral marketing at scale. In: IEEE INFOCOM 2017-IEEE conference on computer communications. IEEE, pp 1–9
go back to reference Li X, Smith JD, Dinh TN, Thai MT (2019) Tiptop:(almost) exact solutions for influence maximization in billion-scale networks. IEEE/ACM Trans Netw 27(2):649–661CrossRef Li X, Smith JD, Dinh TN, Thai MT (2019) Tiptop:(almost) exact solutions for influence maximization in billion-scale networks. IEEE/ACM Trans Netw 27(2):649–661CrossRef
go back to reference Liu X, Li M, Li S, Peng S, Liao X, Lu X (2013) Imgpu: GPU-accelerated influence maximization in large-scale social networks. IEEE Trans Parallel Distrib Syst 25(1):136–145 Liu X, Li M, Li S, Peng S, Liao X, Lu X (2013) Imgpu: GPU-accelerated influence maximization in large-scale social networks. IEEE Trans Parallel Distrib Syst 25(1):136–145
go back to reference Marro J, Dickman R (2005) Nonequilibrium phase transitions in lattice models. Cambridge University Press, Aléa-SaclayMATH Marro J, Dickman R (2005) Nonequilibrium phase transitions in lattice models. Cambridge University Press, Aléa-SaclayMATH
go back to reference Molloy M, Reed B (1995) A critical point for random graphs with a given degree sequence. Random Struct Algorithms 6(2–3):161–180MathSciNetCrossRef Molloy M, Reed B (1995) A critical point for random graphs with a given degree sequence. Random Struct Algorithms 6(2–3):161–180MathSciNetCrossRef
go back to reference Moore C, Newman ME (2000) Epidemics and percolation in small-world networks. Phys Rev E 61(5):5678CrossRef Moore C, Newman ME (2000) Epidemics and percolation in small-world networks. Phys Rev E 61(5):5678CrossRef
go back to reference More J, Lingam C (2019) A gradient-based methodology for optimizing time for influence diffusion in social networks. Soc Netw Anal Min 9(1):5CrossRef More J, Lingam C (2019) A gradient-based methodology for optimizing time for influence diffusion in social networks. Soc Netw Anal Min 9(1):5CrossRef
go back to reference Morone F, Makse HA (2015) Influence maximization in complex networks through optimal percolation. Nature 524(7563):65CrossRef Morone F, Makse HA (2015) Influence maximization in complex networks through optimal percolation. Nature 524(7563):65CrossRef
go back to reference Newman ME (2001) Clustering and preferential attachment in growing networks. Phys Rev E 64(2):025102CrossRef Newman ME (2001) Clustering and preferential attachment in growing networks. Phys Rev E 64(2):025102CrossRef
go back to reference Nguyen HT, Thai MT, Dinh TN (2016) Stop-and-stare: optimal sampling algorithms for viral marketing in billion-scale networks. In: Proceedings of the 2016 international conference on management of data. ACM, pp 695–710 Nguyen HT, Thai MT, Dinh TN (2016) Stop-and-stare: optimal sampling algorithms for viral marketing in billion-scale networks. In: Proceedings of the 2016 international conference on management of data. ACM, pp 695–710
go back to reference Pastor-Satorras R, Vespignani A (2001) Epidemic dynamics and endemic states in complex networks. Phys Rev E 63(6):066117CrossRef Pastor-Satorras R, Vespignani A (2001) Epidemic dynamics and endemic states in complex networks. Phys Rev E 63(6):066117CrossRef
go back to reference Piraveenan M, Harré M, Kasthurirathna D (2016) Optimising influence in social networks using bounded rationality models. Soc Netw Anal Min 6:54CrossRef Piraveenan M, Harré M, Kasthurirathna D (2016) Optimising influence in social networks using bounded rationality models. Soc Netw Anal Min 6:54CrossRef
go back to reference Srivastava A, Chelmis C, Prasanna V (2015) The unified model of social influence and its application in influence maximization. Soc Netw Anal Min 5:66CrossRef Srivastava A, Chelmis C, Prasanna V (2015) The unified model of social influence and its application in influence maximization. Soc Netw Anal Min 5:66CrossRef
go back to reference Tang Y, Xiao X, Shi Y (2014) Influence maximization: near-optimal time complexity meets practical efficiency. In: Proceedings of the 2014 ACM SIGMOD international conference on management of data. ACM, pp 75–86 Tang Y, Xiao X, Shi Y (2014) Influence maximization: near-optimal time complexity meets practical efficiency. In: Proceedings of the 2014 ACM SIGMOD international conference on management of data. ACM, pp 75–86
go back to reference Tang Y, Shi Y, Xiao X (2015) Influence maximization in near-linear time: a martingale approach. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data. ACM, pp 1539–1554 Tang Y, Shi Y, Xiao X (2015) Influence maximization in near-linear time: a martingale approach. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data. ACM, pp 1539–1554
go back to reference Tang J, Tang X, Yuan J (2018) An efficient and effective hop-based approach for influence maximization in social networks. Soc Netw Anal Min 8:10CrossRef Tang J, Tang X, Yuan J (2018) An efficient and effective hop-based approach for influence maximization in social networks. Soc Netw Anal Min 8:10CrossRef
go back to reference Tsugawa S, Ohsaki H (2018) Robustness of influence maximization against non-adversarial perturbations. In: IEEE/ACM international conference on advances in social networks analysis and mining. Springer, Cham, pp 193–210 Tsugawa S, Ohsaki H (2018) Robustness of influence maximization against non-adversarial perturbations. In: IEEE/ACM international conference on advances in social networks analysis and mining. Springer, Cham, pp 193–210
go back to reference Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440CrossRef Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440CrossRef
Metadata
Title
A numerical evaluation of the accuracy of influence maximization algorithms
Authors
Hautahi Kingi
Li-An Daniel Wang
Tom Shafer
Minh Huynh
Mike Trinh
Aaron Heuser
George Rochester
Antonio Paredes
Publication date
01-12-2020
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2020
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-020-00680-5

Premium Partner