Skip to main content
Top
Published in: Journal of Scientific Computing 2/2016

08-12-2015

A Numerical Framework for Integrating Deferred Correction Methods to Solve High Order Collocation Formulations of ODEs

Authors: Wenzhen Qu, Namdi Brandon, Dangxing Chen, Jingfang Huang, Tyler Kress

Published in: Journal of Scientific Computing | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recent analysis and numerical experiments show that the deferred correction methods are competitive numerical schemes for time dependent differential equations. These methods differ in the mathematical formulations, choices of collocation points, and numerical integration or differentiation strategies. Existing analyses of these methods usually follow traditional ODE theory and study each algorithm’s convergence and stability properties as the step size \(\varDelta t\) varies. In this paper, we study the deferred correction methods from a different perspective by separating two different concepts in the algorithm: (1) the properties of the converged solution to the collocation formulation, and (2) the convergence procedure utilizing the deferred correction schemes to iteratively and efficiently reduce the error in the provisional solution. This new viewpoint allows the construction of a numerical framework to integrate existing techniques, by (1) selecting an appropriate collocation discretization based on the physical properties of the solution to balance the time step size and accuracy of the initial approximate solution; and by (2) applying different deferred correction strategies for reducing different components in the error of the provisional solution. This paper discusses properties of different components in the numerical framework, and presents preliminary results on the effective integration of these components for ODE initial value problems. Our results provide useful guidelines for implementing “optimal” time integration schemes for general time dependent differential equations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Ascher, U., Petzold, L.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia (1998)CrossRefMATH Ascher, U., Petzold, L.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia (1998)CrossRefMATH
2.
go back to reference Atkinson, K.: An Introduction to Numerical Analysis, 2nd edn. Wiley, Hoboken (1989)MATH Atkinson, K.: An Introduction to Numerical Analysis, 2nd edn. Wiley, Hoboken (1989)MATH
3.
go back to reference Auzinger, W., Hofstatter, H., Kreuzer, W., Weinmuller, E.: Modified defect correction algorithms for ODEs. Part I: general theory. Numer. Algorithms 36, 135–156 (2004)MathSciNetCrossRefMATH Auzinger, W., Hofstatter, H., Kreuzer, W., Weinmuller, E.: Modified defect correction algorithms for ODEs. Part I: general theory. Numer. Algorithms 36, 135–156 (2004)MathSciNetCrossRefMATH
4.
go back to reference Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd edn. SIAM, Philadelphia (1994)CrossRef Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd edn. SIAM, Philadelphia (1994)CrossRef
5.
go back to reference Barrio, R.: On the a-stability of Runge–Kutta collocation methods based on orthogonal polynomials. SIAM J. Numer. Anal. 36(4), 1291–1303 (1999)MathSciNetCrossRefMATH Barrio, R.: On the a-stability of Runge–Kutta collocation methods based on orthogonal polynomials. SIAM J. Numer. Anal. 36(4), 1291–1303 (1999)MathSciNetCrossRefMATH
6.
7.
go back to reference Brown, P., Hindmarsh, A., Petzold, L.: Using Krylov methods in the solution of large-scale differential-algebraic systems. SIAM J. Sci. Comput. 15, 1467–1488 (1994)MathSciNetCrossRefMATH Brown, P., Hindmarsh, A., Petzold, L.: Using Krylov methods in the solution of large-scale differential-algebraic systems. SIAM J. Sci. Comput. 15, 1467–1488 (1994)MathSciNetCrossRefMATH
8.
go back to reference Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1988)CrossRefMATH Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1988)CrossRefMATH
9.
go back to reference Causley, M., Christlieb, A., Ong, B., Van Groningen, L.: Method of lines transpose: an implicit solution to the wave equation. Math. Comput. 83, 2763–2786 (2014)MathSciNetCrossRefMATH Causley, M., Christlieb, A., Ong, B., Van Groningen, L.: Method of lines transpose: an implicit solution to the wave equation. Math. Comput. 83, 2763–2786 (2014)MathSciNetCrossRefMATH
10.
go back to reference Chen, W., Wang, X., Yu, Y.: Reducing the computational requirements of the differential quadrature method. Numer. Methods Partial Differ. Equ. 12, 565–577 (1996)MathSciNetCrossRefMATH Chen, W., Wang, X., Yu, Y.: Reducing the computational requirements of the differential quadrature method. Numer. Methods Partial Differ. Equ. 12, 565–577 (1996)MathSciNetCrossRefMATH
11.
go back to reference Christlieb, A., Ong, B., Qiu, J.M.: Integral deferred correction methods constructed with high order Runge–Kutta integrators. Math. Comput. 79(270), 761–783 (2010)MathSciNetCrossRefMATH Christlieb, A., Ong, B., Qiu, J.M.: Integral deferred correction methods constructed with high order Runge–Kutta integrators. Math. Comput. 79(270), 761–783 (2010)MathSciNetCrossRefMATH
12.
go back to reference Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT Numer. Math. 40(2), 241–266 (2000)MathSciNetCrossRefMATH Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT Numer. Math. 40(2), 241–266 (2000)MathSciNetCrossRefMATH
13.
go back to reference Emmett, M., Minion, M.: Toward an efficient parallel in time method for partial differential equations. Commun. Appl. Math. Comput. Sci. 7(1), 105–132 (2012)MathSciNetCrossRefMATH Emmett, M., Minion, M.: Toward an efficient parallel in time method for partial differential equations. Commun. Appl. Math. Comput. Sci. 7(1), 105–132 (2012)MathSciNetCrossRefMATH
14.
go back to reference Gander, M.J., Vandewalle, S.: Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29(2), 556–578 (2007)MathSciNetCrossRefMATH Gander, M.J., Vandewalle, S.: Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29(2), 556–578 (2007)MathSciNetCrossRefMATH
15.
go back to reference Glaser, A., Rokhlin, V.: A new class of highly accurate solvers for ordinary differential equations. J. Sci. Comput. 38(3), 368–399 (2009)MathSciNetCrossRefMATH Glaser, A., Rokhlin, V.: A new class of highly accurate solvers for ordinary differential equations. J. Sci. Comput. 38(3), 368–399 (2009)MathSciNetCrossRefMATH
16.
go back to reference Gottlieb, D., Orszag, S.: Numerical Analysis of Spectral Methods. SIAM, Philadelphia (1977)CrossRefMATH Gottlieb, D., Orszag, S.: Numerical Analysis of Spectral Methods. SIAM, Philadelphia (1977)CrossRefMATH
19.
go back to reference Hairer, E., Hairer, M.: Gnicodes—matlab programs for geometric numerical integration. In: Blowey, J., Craig, A., Shardlow, T. (eds.) Frontiers in Numerical Analysis, pp. 199–240. Springer, Berlin (2003) Hairer, E., Hairer, M.: Gnicodes—matlab programs for geometric numerical integration. In: Blowey, J., Craig, A., Shardlow, T. (eds.) Frontiers in Numerical Analysis, pp. 199–240. Springer, Berlin (2003)
20.
go back to reference Hairer, E., Lubich, C., Roche, M.: The Numerical Solution of Differential-Algebraic Systems by Runge–Kutta Methods. Springer, Berlin (1989)MATH Hairer, E., Lubich, C., Roche, M.: The Numerical Solution of Differential-Algebraic Systems by Runge–Kutta Methods. Springer, Berlin (1989)MATH
21.
go back to reference Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2002)CrossRefMATH Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2002)CrossRefMATH
22.
go back to reference Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer, Berlin (2006)MATH Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer, Berlin (2006)MATH
23.
go back to reference Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, Berlin (1996)CrossRefMATH Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, Berlin (1996)CrossRefMATH
24.
go back to reference Huang, J., Jia, J., Minion, M.: Accelerating the convergence of spectral deferred correction methods. J. Comput. Phys. 214, 633–656 (2006)MathSciNetCrossRefMATH Huang, J., Jia, J., Minion, M.: Accelerating the convergence of spectral deferred correction methods. J. Comput. Phys. 214, 633–656 (2006)MathSciNetCrossRefMATH
25.
go back to reference Huang, J., Jia, J., Minion, M.: Arbitrary order Krylov deferred correction methods for differential algebraic equations. J. Comput. Phys. 221(2), 739–760 (2007)MathSciNetCrossRefMATH Huang, J., Jia, J., Minion, M.: Arbitrary order Krylov deferred correction methods for differential algebraic equations. J. Comput. Phys. 221(2), 739–760 (2007)MathSciNetCrossRefMATH
26.
go back to reference Jia, J., Huang, J.: Krylov deferred correction accelerated method of lines transpose for parabolic problems. J. Comput. Phys. 227(3), 1739–1753 (2008)MathSciNetCrossRefMATH Jia, J., Huang, J.: Krylov deferred correction accelerated method of lines transpose for parabolic problems. J. Comput. Phys. 227(3), 1739–1753 (2008)MathSciNetCrossRefMATH
27.
go back to reference Jia, J., Liu, J.: Stable and spectrally accurate schemes for the Navier–Stokes equations. SIAM J. Sci. Comput. 33(5), 2421–2439 (2011)MathSciNetCrossRefMATH Jia, J., Liu, J.: Stable and spectrally accurate schemes for the Navier–Stokes equations. SIAM J. Sci. Comput. 33(5), 2421–2439 (2011)MathSciNetCrossRefMATH
28.
go back to reference Kelly, C.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995)CrossRef Kelly, C.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995)CrossRef
29.
go back to reference Kelly, C.: Solving Nonlinear Equations with Newton’s Method. SIAM, Philadelphia (2003)CrossRef Kelly, C.: Solving Nonlinear Equations with Newton’s Method. SIAM, Philadelphia (2003)CrossRef
30.
go back to reference Kennedy, C., Carpenter, M.H.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44, 139–181 (2003)MathSciNetCrossRefMATH Kennedy, C., Carpenter, M.H.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44, 139–181 (2003)MathSciNetCrossRefMATH
31.
go back to reference Knoll, D., Keyes, D.: Jacobian-free Newton–Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193(2), 357–397 (2004)MathSciNetCrossRefMATH Knoll, D., Keyes, D.: Jacobian-free Newton–Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193(2), 357–397 (2004)MathSciNetCrossRefMATH
32.
go back to reference Kushnir, D., Rokhlin, V.: A highly accurate solver for stiff ordinary differential equations. SIAM J. Sci. Comput. 34(3), A1296–A1315 (2012)MathSciNetCrossRefMATH Kushnir, D., Rokhlin, V.: A highly accurate solver for stiff ordinary differential equations. SIAM J. Sci. Comput. 34(3), A1296–A1315 (2012)MathSciNetCrossRefMATH
33.
go back to reference Layton, A.T., Minion, M.L.: Implications of the choice of quadrature nodes for Picard integral deferred corrections methods for ordinary differential equations. BIT Numer. Math. 45(2), 341–373 (2005)MathSciNetCrossRefMATH Layton, A.T., Minion, M.L.: Implications of the choice of quadrature nodes for Picard integral deferred corrections methods for ordinary differential equations. BIT Numer. Math. 45(2), 341–373 (2005)MathSciNetCrossRefMATH
34.
go back to reference Li, S., Petzold, L.: Software and algorithms for sensitivity analysis of large-scale differential algebraic systems. J. Comput. Appl. Math. 125(1), 131–145 (2000)MathSciNetCrossRefMATH Li, S., Petzold, L.: Software and algorithms for sensitivity analysis of large-scale differential algebraic systems. J. Comput. Appl. Math. 125(1), 131–145 (2000)MathSciNetCrossRefMATH
35.
go back to reference Lions, J., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDE’s. Comptes Rendus de l’Academie des Sciences Series I Mathematics 332(7), 661–668 (2001)MathSciNetMATH Lions, J., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDE’s. Comptes Rendus de l’Academie des Sciences Series I Mathematics 332(7), 661–668 (2001)MathSciNetMATH
36.
go back to reference Lu, B., Xiaolin, C., Huang, J., McCammon, A.: Order N algorithm for computation of electrostatic interactions in biomolecular systems. Proc. Nat. Acad. Sci. 103(51), 19314–19319 (2006)CrossRef Lu, B., Xiaolin, C., Huang, J., McCammon, A.: Order N algorithm for computation of electrostatic interactions in biomolecular systems. Proc. Nat. Acad. Sci. 103(51), 19314–19319 (2006)CrossRef
38.
go back to reference Saad, Y., Schultz, M.: GMRES: a generalized minimal residual algorithm for solving non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)MathSciNetCrossRefMATH Saad, Y., Schultz, M.: GMRES: a generalized minimal residual algorithm for solving non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)MathSciNetCrossRefMATH
39.
go back to reference Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, Berlin (1992)MATH Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, Berlin (1992)MATH
Metadata
Title
A Numerical Framework for Integrating Deferred Correction Methods to Solve High Order Collocation Formulations of ODEs
Authors
Wenzhen Qu
Namdi Brandon
Dangxing Chen
Jingfang Huang
Tyler Kress
Publication date
08-12-2015
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 2/2016
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-015-0146-9

Other articles of this Issue 2/2016

Journal of Scientific Computing 2/2016 Go to the issue

Premium Partner