Skip to main content
Top
Published in: Journal of Materials Science 10/2017

03-02-2017 | Original Paper

A numerical model for a hypoeutectic alloy droplet deposition with non-equilibrium solidification

Authors: Vimal Ramanuj, Albert Y. Tong

Published in: Journal of Materials Science | Issue 10/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A numerical model is developed to study the splat morphology and solidification characteristics of a molten hypoeutectic alloy droplet impinging and solidifying on a substrate. The study finds application in optimization and improvement of metal additive manufacturing processes such as solder jetting, microcasting, sputtering and 3D printing. The major mathematical and numerical challenges include solution of multiphase flow governing equations, interface tracking and modeling the non-equilibrium (rapid) solidification on a macroscopic domain. The free surface is tracked using a volume of fluid method with a piecewise linear interface construction while the mushy phase is modelled as a pseudo porous medium. An enthalpy formulation of the energy equation is coupled with the solute transport equation and the system is solved simultaneously for the temperature and concentration profiles until the eutectic point is reached; beyond which a special treatment is employed till complete solidification. Segregation models (with back diffusion) and eutectic phase diagram are incorporated in the solution procedure. The splat morphology, concentration profiles and microstructural properties are closely examined with emphasis on the convective effects and eutectic formation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Cannon JR (1984) The one-dimensional heat equation. Addison Wesley, Boston, pp 281–326CrossRef Cannon JR (1984) The one-dimensional heat equation. Addison Wesley, Boston, pp 281–326CrossRef
2.
go back to reference Madejski J (1976) Solidification of droplets on a cold surface. Int J Heat Mass Transf 19:1009–1013CrossRef Madejski J (1976) Solidification of droplets on a cold surface. Int J Heat Mass Transf 19:1009–1013CrossRef
3.
go back to reference Aceves SM, Shapiro AB, Sahai V (1999) An accuracy evaluation for the Madejski splat-quench solidification model. ASME Int Mech Eng Congr Expos, Nashville, pp 273–280 Aceves SM, Shapiro AB, Sahai V (1999) An accuracy evaluation for the Madejski splat-quench solidification model. ASME Int Mech Eng Congr Expos, Nashville, pp 273–280
4.
go back to reference Rangel RH, Bian X (1997) Metal-droplet deposition model including liquid deformaion and substrate remelting. Int J Heat Mass Transf 40:2549–2564CrossRef Rangel RH, Bian X (1997) Metal-droplet deposition model including liquid deformaion and substrate remelting. Int J Heat Mass Transf 40:2549–2564CrossRef
5.
go back to reference Pasandideh-Fard M, Bhola R, Chandra S, Mostaghimi J (1998) Deposition of tin droplets on a steel plate: simulations and experiments. Int J Heat Mass Transf 40:2929–2945CrossRef Pasandideh-Fard M, Bhola R, Chandra S, Mostaghimi J (1998) Deposition of tin droplets on a steel plate: simulations and experiments. Int J Heat Mass Transf 40:2929–2945CrossRef
6.
go back to reference Liu H (2000) Science and engineering of droplets. Noyes Publications, New York, pp 193–232 Liu H (2000) Science and engineering of droplets. Noyes Publications, New York, pp 193–232
7.
go back to reference Brent AD, Voller VR, Reid KJ (1988) Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer Heat Transf 3:297–318 Brent AD, Voller VR, Reid KJ (1988) Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer Heat Transf 3:297–318
8.
go back to reference Attinger D, Haferi S, Zhao Z, Poulikakos D (2000) Transport phenomenon in the impact of a molten droplet on a surface: part II: heat transfer and solidfication. Ann Rev Heat Transf 11:145–206CrossRef Attinger D, Haferi S, Zhao Z, Poulikakos D (2000) Transport phenomenon in the impact of a molten droplet on a surface: part II: heat transfer and solidfication. Ann Rev Heat Transf 11:145–206CrossRef
9.
go back to reference Ni J, Beckermann C (1991) A volume-averaged two phase model for transport phenomenon during solidification. Metall Trans B 22(3):349–361CrossRef Ni J, Beckermann C (1991) A volume-averaged two phase model for transport phenomenon during solidification. Metall Trans B 22(3):349–361CrossRef
10.
go back to reference Voller VR, Brent AD, Prakash C (1989) The modeling of heat, mass and solute transport in solidification systems. Int J Heat Mass Transf 32(9):1719–1731CrossRef Voller VR, Brent AD, Prakash C (1989) The modeling of heat, mass and solute transport in solidification systems. Int J Heat Mass Transf 32(9):1719–1731CrossRef
11.
go back to reference Voller VR (2006) Numerical methods for phase change problems, in handbook of numerical heat transfer, 2nd edn. Wiley, Hoboken, pp 593–622 Voller VR (2006) Numerical methods for phase change problems, in handbook of numerical heat transfer, 2nd edn. Wiley, Hoboken, pp 593–622
12.
go back to reference Porter DA, Easterling KE, Sherif M (2009) Phase transformations in metals and alloys, 3rd edn. CRC Press, Boca Raton, pp 209–226 Porter DA, Easterling KE, Sherif M (2009) Phase transformations in metals and alloys, 3rd edn. CRC Press, Boca Raton, pp 209–226
13.
go back to reference Ramanuj V (2016) Numerical modeling of an alloy droplet deposition with non-equilirium solidification. University of Texas at Arlington, Arlington, pp 28–70 Ramanuj V (2016) Numerical modeling of an alloy droplet deposition with non-equilirium solidification. University of Texas at Arlington, Arlington, pp 28–70
14.
go back to reference Tong AY, Holt BR (1997) Numerical study on the solidification of liquid metal droplets impacting onto a substrate. Numer Heat Transf Part A Appl 8:797–817CrossRef Tong AY, Holt BR (1997) Numerical study on the solidification of liquid metal droplets impacting onto a substrate. Numer Heat Transf Part A Appl 8:797–817CrossRef
15.
go back to reference Kothe DB, Mjolsness RC, Torrey MD (1991) RIPPLE: a computer program for incompressible flows with free surfaces. Los Alamos National Laboratory, Technical Report LA-12007-MS, Los Alamos, pp 3–35 Kothe DB, Mjolsness RC, Torrey MD (1991) RIPPLE: a computer program for incompressible flows with free surfaces. Los Alamos National Laboratory, Technical Report LA-12007-MS, Los Alamos, pp 3–35
16.
go back to reference Carman PC (1997) Fluid flow through granular beds. Chem Eng Res Des 75:32–48CrossRef Carman PC (1997) Fluid flow through granular beds. Chem Eng Res Des 75:32–48CrossRef
17.
go back to reference Groulx D, Kheirabadi AC (2015) The effect of the mushy zone constant on simulated phase change heat transfer. In ICHMT International Symposium on Advances in Computational Heat Transfer, Piscataway Groulx D, Kheirabadi AC (2015) The effect of the mushy zone constant on simulated phase change heat transfer. In ICHMT International Symposium on Advances in Computational Heat Transfer, Piscataway
18.
go back to reference Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354CrossRef Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354CrossRef
19.
go back to reference Kershaw DS (1978) The incomplete Cholesky—Conjugate gradient method for the iterative solution of systems of linear equations. J Comput Phys 26(1):43–65CrossRef Kershaw DS (1978) The incomplete Cholesky—Conjugate gradient method for the iterative solution of systems of linear equations. J Comput Phys 26(1):43–65CrossRef
20.
go back to reference Youngs DL (1982) Time-dependent multi-material flow with large fluid distortion. Numer Method Fluid Dyn 24:273–285 Youngs DL (1982) Time-dependent multi-material flow with large fluid distortion. Numer Method Fluid Dyn 24:273–285
21.
go back to reference Rudman M (1997) Volume-tracking methods for interfacial flow calculations. Int J Numer Method Fluid 24(7):671–691CrossRef Rudman M (1997) Volume-tracking methods for interfacial flow calculations. Int J Numer Method Fluid 24(7):671–691CrossRef
22.
go back to reference Voller VR, Cross M, Markatos NC (1987) An enthalpy method for convection/diffusion phase change. Int J Numer Method Eng 1:271–284CrossRef Voller VR, Cross M, Markatos NC (1987) An enthalpy method for convection/diffusion phase change. Int J Numer Method Eng 1:271–284CrossRef
23.
go back to reference Patankar S (1992) Numerical heat transfer and fluid flow. CRC Press, Boston, pp 79–112 Patankar S (1992) Numerical heat transfer and fluid flow. CRC Press, Boston, pp 79–112
24.
go back to reference Voller VR (1997) A similarity solution for the solidification of a multicomponent alloy. Int J Heat Mass Transf 40(12):2869–2877CrossRef Voller VR (1997) A similarity solution for the solidification of a multicomponent alloy. Int J Heat Mass Transf 40(12):2869–2877CrossRef
25.
go back to reference Kobayashi S (1988) Solute redistribution during solidification with diffusion in solid phase: a theoretical analysis. J Cryst Growth 88:87–96CrossRef Kobayashi S (1988) Solute redistribution during solidification with diffusion in solid phase: a theoretical analysis. J Cryst Growth 88:87–96CrossRef
26.
go back to reference Attinger D, Zhao Z, Poulikakos D (2000) An experimental study of molten microdroplet surface deposition and solidification: transport behavior and wetting angle dynamics. J Heat Transf 122:544–556CrossRef Attinger D, Zhao Z, Poulikakos D (2000) An experimental study of molten microdroplet surface deposition and solidification: transport behavior and wetting angle dynamics. J Heat Transf 122:544–556CrossRef
27.
go back to reference Tian D, Wang C, Tian Y (2008) Effect of solidification on solder bump formation in solder jet process: simulation and experiment. Trans Nonferrous Met Soc Chin 18:1201–1208CrossRef Tian D, Wang C, Tian Y (2008) Effect of solidification on solder bump formation in solder jet process: simulation and experiment. Trans Nonferrous Met Soc Chin 18:1201–1208CrossRef
28.
go back to reference Ramanuj V, Tong AY (2016) Simultaneous spreading and solidification of an impacting molten droplet with substrate remelting. J Heat Transf 139(3):032301–032311CrossRef Ramanuj V, Tong AY (2016) Simultaneous spreading and solidification of an impacting molten droplet with substrate remelting. J Heat Transf 139(3):032301–032311CrossRef
29.
go back to reference Pasandideh-Fard M (1998) Droplet impact and solidification in a thermal spray process. University of Toronto, Toronto, pp 110–135 Pasandideh-Fard M (1998) Droplet impact and solidification in a thermal spray process. University of Toronto, Toronto, pp 110–135
30.
go back to reference Markworth AJ, Saunders JH (1992) An improved velocity field for the Madejski splat quench solidification Model. Int J Heat Mass Transf 19:1836–1837CrossRef Markworth AJ, Saunders JH (1992) An improved velocity field for the Madejski splat quench solidification Model. Int J Heat Mass Transf 19:1836–1837CrossRef
31.
go back to reference Spinelli JE, Rocha OF, Garcia A (2006) The influence of melt convection on dendritic spacing of downward unsteady-state directionally solodified Sn–Pb alloys. Mater Res 9(1):51–57CrossRef Spinelli JE, Rocha OF, Garcia A (2006) The influence of melt convection on dendritic spacing of downward unsteady-state directionally solodified Sn–Pb alloys. Mater Res 9(1):51–57CrossRef
32.
go back to reference Cadirli E, Gunduz M (2000) The dependence of lamellar spacing on growth rate and temperature gradient in the lead-tin eutectic alloy. J Mater Process Technol 97:74–81CrossRef Cadirli E, Gunduz M (2000) The dependence of lamellar spacing on growth rate and temperature gradient in the lead-tin eutectic alloy. J Mater Process Technol 97:74–81CrossRef
Metadata
Title
A numerical model for a hypoeutectic alloy droplet deposition with non-equilibrium solidification
Authors
Vimal Ramanuj
Albert Y. Tong
Publication date
03-02-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 10/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0842-y

Other articles of this Issue 10/2017

Journal of Materials Science 10/2017 Go to the issue

Premium Partners