Skip to main content
Top
Published in: Acta Mechanica Sinica 6/2018

09-08-2018 | Research Paper

A numerical study for WENO scheme-based on different lattice Boltzmann flux solver for compressible flows

Authors: You Li, Xiao-Dong Niu, Hai-Zhuan Yuan, Adnan Khan, Xiang Li

Published in: Acta Mechanica Sinica | Issue 6/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the finite difference weighted essentially non-oscillatory (WENO) scheme is incorporated into the recently developed four kinds of lattice Boltzmann flux solver (LBFS) to simulate compressible flows, including inviscid LBFS I, viscous LBFS II, hybrid LBFS III and hybrid LBFS IV. Hybrid LBFS can automatically realize the switch between inviscid LBFS I and viscous LBFS II through introducing a switch function. The resultant hybrid WENO–LBFS scheme absorbs the advantages of WENO scheme and hybrid LBFS. We investigate the performance of WENO scheme based on four kinds of LBFS systematically. Numerical results indicate that the devopled hybrid WENO–LBFS scheme has high accuracy, high resolution and no oscillations. It can not only accurately calculate smooth solutions, but also can effectively capture contact discontinuities and strong shock waves.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Harten, A., Osher, S.: Uniformly high-order accurate non-oscillatory schemes. I. SIAM. J. Numer. Anal. 24(2), 279–309 (1987)MathSciNetCrossRef Harten, A., Osher, S.: Uniformly high-order accurate non-oscillatory schemes. I. SIAM. J. Numer. Anal. 24(2), 279–309 (1987)MathSciNetCrossRef
2.
go back to reference Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)MathSciNetCrossRef Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)MathSciNetCrossRef
3.
go back to reference Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)MathSciNetCrossRef Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)MathSciNetCrossRef
4.
go back to reference Jiang, G.S., Shu, C.W.: Efficient implementation of weighted eno schemes. J. Comput. Phys. 126(1), 202–228 (1996)MathSciNetCrossRef Jiang, G.S., Shu, C.W.: Efficient implementation of weighted eno schemes. J. Comput. Phys. 126(1), 202–228 (1996)MathSciNetCrossRef
5.
go back to reference Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. ICASE Report No. 97-65 (1997) Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. ICASE Report No. 97-65 (1997)
6.
go back to reference Balsara, D.S., Shu, C.W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160(2), 405–452 (2000)MathSciNetCrossRef Balsara, D.S., Shu, C.W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160(2), 405–452 (2000)MathSciNetCrossRef
7.
go back to reference Friedrich, O.: Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. J. Comput. Phys. 144(1), 194–212 (1998)MathSciNetCrossRef Friedrich, O.: Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. J. Comput. Phys. 144(1), 194–212 (1998)MathSciNetCrossRef
8.
go back to reference Shi, J., Hu, C., Shu, C.W.: A technique of treating negative weights in weno schemes. J. Comput. Phys. 175(1), 108–127 (2002)CrossRef Shi, J., Hu, C., Shu, C.W.: A technique of treating negative weights in weno schemes. J. Comput. Phys. 175(1), 108–127 (2002)CrossRef
9.
go back to reference Borges, R., Carmona, M., Costa, B.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3191–3211 (2008)MathSciNetCrossRef Borges, R., Carmona, M., Costa, B.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3191–3211 (2008)MathSciNetCrossRef
10.
go back to reference Fan, P., Shen, Y.Q., Tian, B.L., et al.: A new smoothness indicator for improving the weighted essentially non-oscillatory scheme. J. Comput. Phys. 269(1), 329–354 (2014)MathSciNetCrossRef Fan, P., Shen, Y.Q., Tian, B.L., et al.: A new smoothness indicator for improving the weighted essentially non-oscillatory scheme. J. Comput. Phys. 269(1), 329–354 (2014)MathSciNetCrossRef
11.
go back to reference Hu, X.Y., Wang, B., Adams, N.A.: An efficient low-dissipation hybrid weighted essentially non-oscillatory scheme. J. Comput. Phys. 301, 415–424 (2015)MathSciNetCrossRef Hu, X.Y., Wang, B., Adams, N.A.: An efficient low-dissipation hybrid weighted essentially non-oscillatory scheme. J. Comput. Phys. 301, 415–424 (2015)MathSciNetCrossRef
12.
go back to reference Shahbazi, K.: High-order hybrid fourier continuation-weno scheme for 3D compressible Navier–Stokes equations. In: 46th AIAA Fluid Dynamics Conference, Washington (2016) Shahbazi, K.: High-order hybrid fourier continuation-weno scheme for 3D compressible Navier–Stokes equations. In: 46th AIAA Fluid Dynamics Conference, Washington (2016)
13.
go back to reference Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)CrossRef Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)CrossRef
14.
go back to reference Funaro, D.: Polynamial Approximation of Differential Equations. Springer, Berlin (1992)MATH Funaro, D.: Polynamial Approximation of Differential Equations. Springer, Berlin (1992)MATH
15.
go back to reference Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM. Rev. 25(1), 35–61 (1983)MathSciNetCrossRef Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM. Rev. 25(1), 35–61 (1983)MathSciNetCrossRef
16.
go back to reference Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the Harten-Lax-van Leer riemann solve. Shock Waves 4(1), 25–34 (1994)CrossRef Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the Harten-Lax-van Leer riemann solve. Shock Waves 4(1), 25–34 (1994)CrossRef
17.
go back to reference Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (2009)CrossRef Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (2009)CrossRef
18.
go back to reference Titarev, V.A., Toro, E.F.: Finite-volume weno schemes for three-dimensional conservation laws. J. Comput. Phys. 201(1), 238–260 (2004)MathSciNetCrossRef Titarev, V.A., Toro, E.F.: Finite-volume weno schemes for three-dimensional conservation laws. J. Comput. Phys. 201(1), 238–260 (2004)MathSciNetCrossRef
19.
go back to reference Xu, K.: A gas-kinetic bgk scheme for the navier-stock equations and its connection with artificial dissipation and godunov method. J. Comput. Phys. 171, 289–335 (2001)MathSciNetCrossRef Xu, K.: A gas-kinetic bgk scheme for the navier-stock equations and its connection with artificial dissipation and godunov method. J. Comput. Phys. 171, 289–335 (2001)MathSciNetCrossRef
20.
go back to reference Yang, L.M., Shu, C., Wu, J.: A simple distribution function-based gas-kinetic scheme for simulation of viscous incompressible and compressible flows. J. Comput. Phys. 274, 611–632 (2014)MathSciNetCrossRef Yang, L.M., Shu, C., Wu, J.: A simple distribution function-based gas-kinetic scheme for simulation of viscous incompressible and compressible flows. J. Comput. Phys. 274, 611–632 (2014)MathSciNetCrossRef
21.
go back to reference Sun, Y., Shu, C., Teo, C.J., et al.: Explicit formulations of gas-kinetic flux solver for simulation of incompressible and compressible viscous flows. J. Comput. Phys. 300, 492–519 (2015)MathSciNetCrossRef Sun, Y., Shu, C., Teo, C.J., et al.: Explicit formulations of gas-kinetic flux solver for simulation of incompressible and compressible viscous flows. J. Comput. Phys. 300, 492–519 (2015)MathSciNetCrossRef
22.
go back to reference Sun, Y., Shu, C., Yang, L.M., et al.: A switch function-based gas-kinetic scheme for simulation of inviscid and viscous compressible flows. Adv. Appl. Math. Mech. 8(5), 703–721 (2016)MathSciNetCrossRef Sun, Y., Shu, C., Yang, L.M., et al.: A switch function-based gas-kinetic scheme for simulation of inviscid and viscous compressible flows. Adv. Appl. Math. Mech. 8(5), 703–721 (2016)MathSciNetCrossRef
23.
go back to reference Pan, L., Li, J.Q., Xu, K.: A few benchmark test cases for higher-order euler solvers. Numer. Math. Theory Methods 10(4), 711–736 (2017)MathSciNetCrossRef Pan, L., Li, J.Q., Xu, K.: A few benchmark test cases for higher-order euler solvers. Numer. Math. Theory Methods 10(4), 711–736 (2017)MathSciNetCrossRef
24.
go back to reference Chou, S.Y., Baganoff, D.: Kinetic flux-vector splitting for the Navier–Stock equations. J. Comput. Phys. 130(2), 217–230 (1997)CrossRef Chou, S.Y., Baganoff, D.: Kinetic flux-vector splitting for the Navier–Stock equations. J. Comput. Phys. 130(2), 217–230 (1997)CrossRef
25.
go back to reference Xu, K.: Gas-kinetic schemes for unsteady compressible flow simulations. In: Lecture series: van Kareman Institute for fluid dynamics A vol. 3, pp. C1–C202 (1998) Xu, K.: Gas-kinetic schemes for unsteady compressible flow simulations. In: Lecture series: van Kareman Institute for fluid dynamics A vol. 3, pp. C1–C202 (1998)
26.
go back to reference He, X., Li, N.: Lattice Boltzmann simulation of electrochemical systems. Comput. Phys. Commun. 129(1), 158–166 (2000)MathSciNetCrossRef He, X., Li, N.: Lattice Boltzmann simulation of electrochemical systems. Comput. Phys. Commun. 129(1), 158–166 (2000)MathSciNetCrossRef
27.
go back to reference Niu, X.D., Shu, C., Chew, Y.T.: A thermal lattice Boltzmann model with diffuse scattering boundary condition for micro thermal flows. Comput. Fluids 36(2), 273–281 (2007)CrossRef Niu, X.D., Shu, C., Chew, Y.T.: A thermal lattice Boltzmann model with diffuse scattering boundary condition for micro thermal flows. Comput. Fluids 36(2), 273–281 (2007)CrossRef
28.
go back to reference Yuan, H.Z., Niu, X.D., Shu, S., et al.: A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating a flexible filament in an incompressible flow. Comput. Math. Appl. 67(5), 1039–1056 (2014)MathSciNetCrossRef Yuan, H.Z., Niu, X.D., Shu, S., et al.: A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating a flexible filament in an incompressible flow. Comput. Math. Appl. 67(5), 1039–1056 (2014)MathSciNetCrossRef
29.
go back to reference Wang, Y., Shu, C., Yang, L.M., et al.: A decoupling multiple-relaxation-time lattice Boltzmann flux solver for non-newtonian power-law fluid flows. J. Non-Newton. Fluid 235, 20–28 (2016)MathSciNetCrossRef Wang, Y., Shu, C., Yang, L.M., et al.: A decoupling multiple-relaxation-time lattice Boltzmann flux solver for non-newtonian power-law fluid flows. J. Non-Newton. Fluid 235, 20–28 (2016)MathSciNetCrossRef
30.
go back to reference Li, Q., Luo, K.H., Kang, Q.J., et al.: Lattice boltzmann methods for multiphase flow and phase-change heat transfer. Prog. Energy Combust. Sci. 52, 62–105 (2016)CrossRef Li, Q., Luo, K.H., Kang, Q.J., et al.: Lattice boltzmann methods for multiphase flow and phase-change heat transfer. Prog. Energy Combust. Sci. 52, 62–105 (2016)CrossRef
31.
go back to reference Xu, A., Shyy, W., Zhao, T.S.: Lattice Boltzmann modeling of transport phenomena in fuel cell and flow batteries. Acta Mech. Sin. 33(3), 555–574 (2017)MathSciNetCrossRef Xu, A., Shyy, W., Zhao, T.S.: Lattice Boltzmann modeling of transport phenomena in fuel cell and flow batteries. Acta Mech. Sin. 33(3), 555–574 (2017)MathSciNetCrossRef
32.
go back to reference Ji, C.Z., Shu, C., Zhao, N.: A lattice Boltzmann method-based flux solver and its application to solve shock tube problem. Mod. Phys. Lett. B. 23(3), 313–316 (2009)CrossRef Ji, C.Z., Shu, C., Zhao, N.: A lattice Boltzmann method-based flux solver and its application to solve shock tube problem. Mod. Phys. Lett. B. 23(3), 313–316 (2009)CrossRef
33.
go back to reference Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)MathSciNetCrossRef Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)MathSciNetCrossRef
34.
go back to reference Steger, J.L., Warming, R.F.: Flux vector splitting of the inviscid gas dynamic equations with application to finite-difference methods. J. Comput. Phys. 40(2), 263–293 (1981)MathSciNetCrossRef Steger, J.L., Warming, R.F.: Flux vector splitting of the inviscid gas dynamic equations with application to finite-difference methods. J. Comput. Phys. 40(2), 263–293 (1981)MathSciNetCrossRef
35.
go back to reference Shu, C.W.: High order weighted essentially non-oscillatory schemes for convection dominated problem. SIAM. Rev. 51(1), 82–126 (2009)MathSciNetCrossRef Shu, C.W.: High order weighted essentially non-oscillatory schemes for convection dominated problem. SIAM. Rev. 51(1), 82–126 (2009)MathSciNetCrossRef
36.
go back to reference Qu, K., Shu, C., Chew, Y.T.: Alternative method to construct equilibrium distribution functions in lattice-Blotzmann method simulation of inviscid compressible flows at high mach number. Phys. Rev. E 75(3), 036706 (2007)MathSciNetCrossRef Qu, K., Shu, C., Chew, Y.T.: Alternative method to construct equilibrium distribution functions in lattice-Blotzmann method simulation of inviscid compressible flows at high mach number. Phys. Rev. E 75(3), 036706 (2007)MathSciNetCrossRef
37.
go back to reference Qu, K., Shu, C., Chew, Y.T.: Simulation of shock-wave propagation with finite volume lattice Boltzmann method. Int. J. Mod. Phys. C 18(4), 447–454 (2007)MathSciNetCrossRef Qu, K., Shu, C., Chew, Y.T.: Simulation of shock-wave propagation with finite volume lattice Boltzmann method. Int. J. Mod. Phys. C 18(4), 447–454 (2007)MathSciNetCrossRef
38.
go back to reference Yang, L.M., Shu, C., Wu, J.: A moment conservation-based non-free parameter compressible lattice Boltzmann model and its application for flux evaluation at cell interface. Comput. Fluids 79(6), 190–199 (2013)MathSciNetCrossRef Yang, L.M., Shu, C., Wu, J.: A moment conservation-based non-free parameter compressible lattice Boltzmann model and its application for flux evaluation at cell interface. Comput. Fluids 79(6), 190–199 (2013)MathSciNetCrossRef
39.
go back to reference Shu, C., Wang, Y., Yang, L.M., et al.: Lattice Boltzmann flux solver: an efficient approach for numerical simulation of fluid flows. Trans. Nanjing Univ. Aeronaut. Astronaut. 31(1), 1–15 (2014) Shu, C., Wang, Y., Yang, L.M., et al.: Lattice Boltzmann flux solver: an efficient approach for numerical simulation of fluid flows. Trans. Nanjing Univ. Aeronaut. Astronaut. 31(1), 1–15 (2014)
40.
go back to reference Shu, C., Wang, Y., Teo, C.J., et al.: Development of lattice boltzmann flux solver for simulation of incompressible flows. Adv. Appl. Math. Mech. 6(4), 436–460 (2014)MathSciNetCrossRef Shu, C., Wang, Y., Teo, C.J., et al.: Development of lattice boltzmann flux solver for simulation of incompressible flows. Adv. Appl. Math. Mech. 6(4), 436–460 (2014)MathSciNetCrossRef
41.
go back to reference Wang, Y., Shu, C., Teo, C.J., et al.: An efficient immersed boundary-lattice Boltzmann flux solver for simulation of 3D incompressible flows with complex geometry. Comput. Fluids 124, 54–66 (2015)MathSciNetCrossRef Wang, Y., Shu, C., Teo, C.J., et al.: An efficient immersed boundary-lattice Boltzmann flux solver for simulation of 3D incompressible flows with complex geometry. Comput. Fluids 124, 54–66 (2015)MathSciNetCrossRef
42.
go back to reference Wang, Y., Shu, C., Huang, H.B., et al.: Multiphase lattice Boltzmann flux solver for incompressible multiphase flows with large density ratio. J. Comput. Phys. 280, 404–423 (2015)MathSciNetCrossRef Wang, Y., Shu, C., Huang, H.B., et al.: Multiphase lattice Boltzmann flux solver for incompressible multiphase flows with large density ratio. J. Comput. Phys. 280, 404–423 (2015)MathSciNetCrossRef
43.
go back to reference Wang, Y., Yang, L.M., Shu, C.: From lattice Boltzmann method to lattice Boltzmann flux solver. Entropy 17(11), 7713–7735 (2015)CrossRef Wang, Y., Yang, L.M., Shu, C.: From lattice Boltzmann method to lattice Boltzmann flux solver. Entropy 17(11), 7713–7735 (2015)CrossRef
44.
go back to reference Yang, L.M., Shu, C., Wu, J.: A hybrid lattice Boltzmann flux solver for simulation of viscous compressible flows. Adv. Appl. Math. Mech. 8(6), 887–910 (2016)MathSciNetCrossRef Yang, L.M., Shu, C., Wu, J.: A hybrid lattice Boltzmann flux solver for simulation of viscous compressible flows. Adv. Appl. Math. Mech. 8(6), 887–910 (2016)MathSciNetCrossRef
45.
go back to reference Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and application. Phys. Rep. 222(3), 145–197 (1992)CrossRef Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and application. Phys. Rep. 222(3), 145–197 (1992)CrossRef
46.
go back to reference Guo, Z.L., Shu, C.: Lattice Boltzmann Method and Its Applications in Engineering. World Scientific, Singapore (2013)CrossRef Guo, Z.L., Shu, C.: Lattice Boltzmann Method and Its Applications in Engineering. World Scientific, Singapore (2013)CrossRef
47.
go back to reference Yang, L.M., Shu, C., Wu, J.: A hybrid lattice Boltzmann flux solver for simulation of 3D compressible viscous flows. In: Eighth International Conference on Computational Fluid Dynamics, Chengdu, China, 14–18 July (2014) Yang, L.M., Shu, C., Wu, J.: A hybrid lattice Boltzmann flux solver for simulation of 3D compressible viscous flows. In: Eighth International Conference on Computational Fluid Dynamics, Chengdu, China, 14–18 July (2014)
48.
go back to reference Li, Y., Yuan, H.Z., Niu, X.D., et al.: Weno scheme-based lattice Boltzmann flux solver for simulation of compressible flows. Commun. Comput. Phys. 23(4), 1012–1036 (2018) Li, Y., Yuan, H.Z., Niu, X.D., et al.: Weno scheme-based lattice Boltzmann flux solver for simulation of compressible flows. Commun. Comput. Phys. 23(4), 1012–1036 (2018)
49.
go back to reference Yang, L.M., Shu, C., Wu, J.: Development and comparative studies of three non-free parameter lattice Boltzmann models for simulation of compressible flows. Adv. Appl. Math. Mech. 4(4), 454–472 (2012)MathSciNetCrossRef Yang, L.M., Shu, C., Wu, J.: Development and comparative studies of three non-free parameter lattice Boltzmann models for simulation of compressible flows. Adv. Appl. Math. Mech. 4(4), 454–472 (2012)MathSciNetCrossRef
50.
go back to reference Xu, X., He, X.Y.: Lattice Boltzmann method and gas-kinetic BGK scheme in the low-mach number viscous flow simulations. J. Comput. Phys. 190, 100–117 (2003)MathSciNetCrossRef Xu, X., He, X.Y.: Lattice Boltzmann method and gas-kinetic BGK scheme in the low-mach number viscous flow simulations. J. Comput. Phys. 190, 100–117 (2003)MathSciNetCrossRef
51.
go back to reference Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)MathSciNetCrossRef Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)MathSciNetCrossRef
Metadata
Title
A numerical study for WENO scheme-based on different lattice Boltzmann flux solver for compressible flows
Authors
You Li
Xiao-Dong Niu
Hai-Zhuan Yuan
Adnan Khan
Xiang Li
Publication date
09-08-2018
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 6/2018
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-018-0785-9

Other articles of this Issue 6/2018

Acta Mechanica Sinica 6/2018 Go to the issue

Premium Partners