Skip to main content
Top
Published in: Optical and Quantum Electronics 8/2016

01-08-2016

A numerical study on the influence of interface recombination on performance of carbon nanotube/GaAs solar cells

Authors: Hossein Movla, Sajjad Ghaffari, Elham Rezaei

Published in: Optical and Quantum Electronics | Issue 8/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Carbon nanotubes (CNT) have unique electronic properties and remarkable optical properties. Despite of on layer thickness of CNTs, it has able to absorb photons from visible to far infrared and terahertz. These unique properties lets to create heterojunction devices by semiconductor/CNTs or metal/CNTs junctions e.g. photodiodes, sensor and heterojunction solar cell. The CNTs can play the role of a heterojunction component for charge separation as a high conductive network for charge transport and as a transparent electrode for light illumination and charge collection. The main objective of the present article is to establish a relation between interface recombination and the characteristics parameters of the heterojunction solar cell based on armchair single walled carbon nanotube as absorber and GaAs as window. It is shown that by increasing the interface recombination open circuit voltage decreases dramatically. Depletion current, J–V characteristic and ideality factor variation in terms of interface recombination has been calculated. Interface recombination at the SWCNT/GaAs interface of the cell leads to a considerable drop of the cell voltage and to a lesser extent to the associated reduction in the cell short circuit current.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bhattacharyya, S., Kymakis, E., Amaratunga, G.A.J.: Photovoltaic properties of dye functionalized single-wall carbon nanotube/conjugated polymer devices. Chem. Mater. 16, 4819–4823 (2004)CrossRef Bhattacharyya, S., Kymakis, E., Amaratunga, G.A.J.: Photovoltaic properties of dye functionalized single-wall carbon nanotube/conjugated polymer devices. Chem. Mater. 16, 4819–4823 (2004)CrossRef
go back to reference Camacho, R.E., Morgan, A.R., M Flores, C., McLeod, T.A., Kumsomboone, V.S., Mordecai, B.J., Bhattacharjea, R., Tong, W., Wagner, B.K., Flicker, J.D., Turano, S.P., Ready, W.J.: Carbon nanotube arrays for photovoltaic applications. JOM 59, 39–42 (2007)CrossRef Camacho, R.E., Morgan, A.R., M Flores, C., McLeod, T.A., Kumsomboone, V.S., Mordecai, B.J., Bhattacharjea, R., Tong, W., Wagner, B.K., Flicker, J.D., Turano, S.P., Ready, W.J.: Carbon nanotube arrays for photovoltaic applications. JOM 59, 39–42 (2007)CrossRef
go back to reference Chen, Z., Lin, Y.M., Rooks, M.J., Avouris, P.: Graphene nano-ribbon electronics. Phys. E 18, 228–232 (2007)CrossRef Chen, Z., Lin, Y.M., Rooks, M.J., Avouris, P.: Graphene nano-ribbon electronics. Phys. E 18, 228–232 (2007)CrossRef
go back to reference Durkop, T., Getty, S.A., Cobas, E., Fuhrer, M.S.: Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35–39 (2004)ADSCrossRef Durkop, T., Getty, S.A., Cobas, E., Fuhrer, M.S.: Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35–39 (2004)ADSCrossRef
go back to reference Flicker, J., Ready, J.: Simulations of absorbance efficiency and power production of three dimensional tower arrays for use in photovoltaics. J. Appl. Phys. 103, 113110 (2008)ADSCrossRef Flicker, J., Ready, J.: Simulations of absorbance efficiency and power production of three dimensional tower arrays for use in photovoltaics. J. Appl. Phys. 103, 113110 (2008)ADSCrossRef
go back to reference Fonash, S.J.: Solar Cell Device Physics, 2nd edn. Academic Press, New York (2010) Fonash, S.J.: Solar Cell Device Physics, 2nd edn. Academic Press, New York (2010)
go back to reference Fuhrer, M.S., Nygard, J., Shih, L., Forero, M., Yoon, Y.-G., Mazzoni, M.S.C., Choi, H.J., Ihm, J., Louie, S.G., A. Zettl and McEuen, P.L.: Crossed nanotube junctions. Science 288, 494–497 (2000)ADSCrossRef Fuhrer, M.S., Nygard, J., Shih, L., Forero, M., Yoon, Y.-G., Mazzoni, M.S.C., Choi, H.J., Ihm, J., Louie, S.G., A. Zettl and McEuen, P.L.: Crossed nanotube junctions. Science 288, 494–497 (2000)ADSCrossRef
go back to reference Geng, J., Zeng, T.: Influence of single-walled carbon nanotubes induced crystallinity enhancement and morphology change on polymer photovoltaic devices. J. Am. Chem. Soc. 128, 16827–16833 (2006)CrossRef Geng, J., Zeng, T.: Influence of single-walled carbon nanotubes induced crystallinity enhancement and morphology change on polymer photovoltaic devices. J. Am. Chem. Soc. 128, 16827–16833 (2006)CrossRef
go back to reference Gobeli, G.W., Allen, F.G.: Photoelectric properties of cleaved GaAs, GaSb, InAs, and InSb surfaces; comparison with Si and Ge. Phys. Rev. 137, A245–A254 (1965)ADSCrossRef Gobeli, G.W., Allen, F.G.: Photoelectric properties of cleaved GaAs, GaSb, InAs, and InSb surfaces; comparison with Si and Ge. Phys. Rev. 137, A245–A254 (1965)ADSCrossRef
go back to reference Gorji, N.E., Movla, H., Sohrabi, F., Hosseinpour, A., Rezaei, M., Babaei, H.: The effects of recombination lifetime on efficiency and J–V characteristics of \({\text{In}}_{x}{\text{Ga}}_{1-x}{\text{N}}/{\text{GaN}}\) quantum dot intermediate band solar cell. Phys. E 42, 2353–2357 (2010)CrossRef Gorji, N.E., Movla, H., Sohrabi, F., Hosseinpour, A., Rezaei, M., Babaei, H.: The effects of recombination lifetime on efficiency and J–V characteristics of \({\text{In}}_{x}{\text{Ga}}_{1-x}{\text{N}}/{\text{GaN}}\) quantum dot intermediate band solar cell. Phys. E 42, 2353–2357 (2010)CrossRef
go back to reference Gunes, S., Neugebauer, H., Sariciftci, N.S.: Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338 (2007)CrossRef Gunes, S., Neugebauer, H., Sariciftci, N.S.: Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338 (2007)CrossRef
go back to reference Javey, A., Wang, Q., Ural, A., Li, Y., Dai, H.: Carbon nanotube transistor arrays for multistage complimentary logic and ring oscillators. Nano Lett. 2, 929–932 (2002)ADSCrossRef Javey, A., Wang, Q., Ural, A., Li, Y., Dai, H.: Carbon nanotube transistor arrays for multistage complimentary logic and ring oscillators. Nano Lett. 2, 929–932 (2002)ADSCrossRef
go back to reference Jia, Y., Wei, J., Wang, K., Cao, A., Shu, Q., Gui, X., Zhu, Y., Zhuang, D., Zhang, Gong, Ma, Beibei, Wang, Liduo, Liu, Wenjin, Wang, Zhicheng, Luo, Jianbin, Wu, Dehai: Nanotube-silicon heterojunction solar cells. Adv. Mater. 20, 4594–4598 (2008)CrossRef Jia, Y., Wei, J., Wang, K., Cao, A., Shu, Q., Gui, X., Zhu, Y., Zhuang, D., Zhang, Gong, Ma, Beibei, Wang, Liduo, Liu, Wenjin, Wang, Zhicheng, Luo, Jianbin, Wu, Dehai: Nanotube-silicon heterojunction solar cells. Adv. Mater. 20, 4594–4598 (2008)CrossRef
go back to reference Jia, Y., Li, P., Gui, X., Wei, J., Wang, K., Zhu, H., Wu, D., Zhang, L., Cao, A., Xu, Y.: Encapsulated carbon nanotube-oxide-silicon solar cells with stable 10 % efficiency. Appl. Phys. Lett. 98, 133115 (2011)ADSCrossRef Jia, Y., Li, P., Gui, X., Wei, J., Wang, K., Zhu, H., Wu, D., Zhang, L., Cao, A., Xu, Y.: Encapsulated carbon nanotube-oxide-silicon solar cells with stable 10 % efficiency. Appl. Phys. Lett. 98, 133115 (2011)ADSCrossRef
go back to reference Jung, Y., Li, X., Rajan, N.K., Taylor, A.D., Reed, M.A.: Record high efficiency single-walled carbon nanotube/silicon p–n junction solar cells. Nano Lett. 13, 95–99 (2013)ADSCrossRef Jung, Y., Li, X., Rajan, N.K., Taylor, A.D., Reed, M.A.: Record high efficiency single-walled carbon nanotube/silicon p–n junction solar cells. Nano Lett. 13, 95–99 (2013)ADSCrossRef
go back to reference Katauraa, H., Kumazawaa, Y., Maniwaa, Y., Umezub, I., Suzukic, S., Ohtsukac, Y., Achibac, Y.: Optical properties of single-wall carbon nanotubes. Synth. Met. 103, 2555–2558 (1999)CrossRef Katauraa, H., Kumazawaa, Y., Maniwaa, Y., Umezub, I., Suzukic, S., Ohtsukac, Y., Achibac, Y.: Optical properties of single-wall carbon nanotubes. Synth. Met. 103, 2555–2558 (1999)CrossRef
go back to reference Khalili, K., Asgari, A., Movla, H., Mottaghizadeh, A., Najafabadi, H.A.: Effects of interface recombination on the performance of SWCNT/GaAs heterojunction solar cell. Proced. Eng. 8, 275–279 (2011) Khalili, K., Asgari, A., Movla, H., Mottaghizadeh, A., Najafabadi, H.A.: Effects of interface recombination on the performance of SWCNT/GaAs heterojunction solar cell. Proced. Eng. 8, 275–279 (2011)
go back to reference Kymakis, E., Amaratunga, G.A.J.: Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl. Phys. Lett. 80, 112–114 (2002)ADSCrossRef Kymakis, E., Amaratunga, G.A.J.: Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl. Phys. Lett. 80, 112–114 (2002)ADSCrossRef
go back to reference Landi, B.J., Raffaelle, R.P., Castro, S.L., Bailey, S.G.: Single-wall carbon nanotube-polymer solar cells. Prog. Photovolt. Res. Appl. 13, 165–172 (2005)CrossRef Landi, B.J., Raffaelle, R.P., Castro, S.L., Bailey, S.G.: Single-wall carbon nanotube-polymer solar cells. Prog. Photovolt. Res. Appl. 13, 165–172 (2005)CrossRef
go back to reference Lee, J.U., Gipp, P.P., Heller, C.M.: Carbon nanotube p–n junction diodes. Appl. Phys. Lett. 85, 145 (2004)ADSCrossRef Lee, J.U., Gipp, P.P., Heller, C.M.: Carbon nanotube p–n junction diodes. Appl. Phys. Lett. 85, 145 (2004)ADSCrossRef
go back to reference Lehman, J.H., Engtrakul, C., Gennett, T., Dillon, A.C.: Single-wall carbon nanotube coating on a pyroelectric detector. Appl. Opt. 44, 483–488 (2005)ADSCrossRef Lehman, J.H., Engtrakul, C., Gennett, T., Dillon, A.C.: Single-wall carbon nanotube coating on a pyroelectric detector. Appl. Opt. 44, 483–488 (2005)ADSCrossRef
go back to reference Léonard, F.: The Physics of Carbon Nanotube Devices. William Andrew, Norwich (2009) Léonard, F.: The Physics of Carbon Nanotube Devices. William Andrew, Norwich (2009)
go back to reference Li, H., Loke, W.K., Zhang, Q., Yoon, S.F.: Physical device modeling of carbon nanotube/photovoltaic cells. Appl. Phy. Lett. 96, 043501 (2010a)ADSCrossRef Li, H., Loke, W.K., Zhang, Q., Yoon, S.F.: Physical device modeling of carbon nanotube/photovoltaic cells. Appl. Phy. Lett. 96, 043501 (2010a)ADSCrossRef
go back to reference Li, X., Zhu, H., Wang, K., Cao, A., Wei, J., Li, C., Jia, Y., Li, Z., Li, X., Dehai, W.: Graphene-on-silicon Schottky junction solar cells. Adv. Mat. 22, 2743–2748 (2010b)CrossRef Li, X., Zhu, H., Wang, K., Cao, A., Wei, J., Li, C., Jia, Y., Li, Z., Li, X., Dehai, W.: Graphene-on-silicon Schottky junction solar cells. Adv. Mat. 22, 2743–2748 (2010b)CrossRef
go back to reference Li, Y., Kodama, S., Kaneko, T., Hatakeyama, R.: Harvesting infrared solar energy by semiconducting single-walled carbon nanotubes. Appl. Phys. Express 4, 065101 (2011)ADSCrossRef Li, Y., Kodama, S., Kaneko, T., Hatakeyama, R.: Harvesting infrared solar energy by semiconducting single-walled carbon nanotubes. Appl. Phys. Express 4, 065101 (2011)ADSCrossRef
go back to reference Liu, S., Yuan, X., Wang, P., Chen, Z.-G., Tang, L., Zhang, E., Zhang, C., Liu, Y., Wang, W., Liu, C., Chen, C., Zou, J., Hu, W., Xiu, F.: Controllable growth of vertical heterostructure \(\text{GaTe}_{x}\text{Se}_{1x}/\text{Si}\) by molecular beam epitaxy. ACS Nano 9, 8592–8598 (2015)CrossRef Liu, S., Yuan, X., Wang, P., Chen, Z.-G., Tang, L., Zhang, E., Zhang, C., Liu, Y., Wang, W., Liu, C., Chen, C., Zou, J., Hu, W., Xiu, F.: Controllable growth of vertical heterostructure \(\text{GaTe}_{x}\text{Se}_{1x}/\text{Si}\) by molecular beam epitaxy. ACS Nano 9, 8592–8598 (2015)CrossRef
go back to reference McEuen, P.L., Fuhrer, M.S., Park, H.: Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1, 78–85 (2002)ADSCrossRef McEuen, P.L., Fuhrer, M.S., Park, H.: Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1, 78–85 (2002)ADSCrossRef
go back to reference Miao, X., Tongay, S., Petterson, M.K., Berke, K., Rinzler, A.G., Appleton, B.R., Hebard, A.F.: High efficiency graphene solar cells by chemical doping. Nano Lett. 12, 2745–2750 (2012)CrossRef Miao, X., Tongay, S., Petterson, M.K., Berke, K., Rinzler, A.G., Appleton, B.R., Hebard, A.F.: High efficiency graphene solar cells by chemical doping. Nano Lett. 12, 2745–2750 (2012)CrossRef
go back to reference Mintmire, J.W., White, C.T.: Electronic and structural properties of carbon nanotubes. Carbon 33, 893–902 (1995)CrossRef Mintmire, J.W., White, C.T.: Electronic and structural properties of carbon nanotubes. Carbon 33, 893–902 (1995)CrossRef
go back to reference Movla, H.: Optimization of the CIGS based thin film solar cells. Numer. Simul. Anal. Opt. 125, 67–70 (2014) Movla, H.: Optimization of the CIGS based thin film solar cells. Numer. Simul. Anal. Opt. 125, 67–70 (2014)
go back to reference Movla, H., Shahalizad, A., Nezamabad, A.R.: Influence of active region thickness on the performance of bulk heterojunction solar cells: electrical modeling and simulation. Opt. Quantum Electron. 47, 621–632 (2014)CrossRef Movla, H., Shahalizad, A., Nezamabad, A.R.: Influence of active region thickness on the performance of bulk heterojunction solar cells: electrical modeling and simulation. Opt. Quantum Electron. 47, 621–632 (2014)CrossRef
go back to reference Movla, H., Chavoshi, S.A., Bargahi, A.: Interface effects in SWCNT\GaAs heterojunction solar cell: a simulation study. Optik 126, 1057–1060 (2015)ADSCrossRef Movla, H., Chavoshi, S.A., Bargahi, A.: Interface effects in SWCNT\GaAs heterojunction solar cell: a simulation study. Optik 126, 1057–1060 (2015)ADSCrossRef
go back to reference Movla, H.: Influence of the inverse Auger process on the performance of InxGa1-xN/GaN. Optik 127, 4799–4802 (2016)ADSCrossRef Movla, H.: Influence of the inverse Auger process on the performance of InxGa1-xN/GaN. Optik 127,  4799–4802 (2016)ADSCrossRef
go back to reference Ong, P.-L., Euler, W.B., Levitsky, I.A.: Hybrid solar cells based on single-walled carbon nanotubes/Si heterojunctions. Nanotechnology 21, 105203 (2010)ADSCrossRef Ong, P.-L., Euler, W.B., Levitsky, I.A.: Hybrid solar cells based on single-walled carbon nanotubes/Si heterojunctions. Nanotechnology 21, 105203 (2010)ADSCrossRef
go back to reference Panthani, M.G., Akhavan, V., Goodfellow, B., Schmidtke, J.P., Dunn, L., Dodabalapur, A., Barbara, P.F., Korgel, B.A.: Synthesis of CulnS2, CulnSe2, and Cu(InxGa(1-x))Se2 (CIGS) nanocrystal “inks” for printable photovoltaics. J. Am. Chem. Soc. 130, 16770–16777 (2008)CrossRef Panthani, M.G., Akhavan, V., Goodfellow, B., Schmidtke, J.P., Dunn, L., Dodabalapur, A., Barbara, P.F., Korgel, B.A.: Synthesis of CulnS2, CulnSe2, and Cu(InxGa(1-x))Se2 (CIGS) nanocrystal “inks” for printable photovoltaics. J. Am. Chem. Soc. 130, 16770–16777 (2008)CrossRef
go back to reference Pasquier, A.D., Unalan, H.E., Kanwal, A., Miller, S., Chhowalla, M.: Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Appl. Phys. Lett. 87, 203511 (2005)ADSCrossRef Pasquier, A.D., Unalan, H.E., Kanwal, A., Miller, S., Chhowalla, M.: Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Appl. Phys. Lett. 87, 203511 (2005)ADSCrossRef
go back to reference Postma, H.W.C., Teepen, T., Yao, Z., Grifoni, M., Dekker, Cees: Carbon nanotube single-electron transistors at room temperature. Science 293, 76–79 (2001)ADSCrossRef Postma, H.W.C., Teepen, T., Yao, Z., Grifoni, M., Dekker, Cees: Carbon nanotube single-electron transistors at room temperature. Science 293, 76–79 (2001)ADSCrossRef
go back to reference Rakhshani, A.E.: Heterojunction properties of electrodeposited CdTe/CdS solar cells. J. Appl. Phys. 90, 4265–4271 (2001)ADSCrossRef Rakhshani, A.E.: Heterojunction properties of electrodeposited CdTe/CdS solar cells. J. Appl. Phys. 90, 4265–4271 (2001)ADSCrossRef
go back to reference Rothwarf, A., Barnett, A.M.: Design analysis of the thin-film \(\text{CdS}-\text{Cu}_2\text{S}\) solar cell. IEEE Trans. Electron Devices 24, 381–387 (1977)ADSCrossRef Rothwarf, A., Barnett, A.M.: Design analysis of the thin-film \(\text{CdS}-\text{Cu}_2\text{S}\) solar cell. IEEE Trans. Electron Devices 24, 381–387 (1977)ADSCrossRef
go back to reference Saad, M., Kassis, A.: Effect of interface recombination on solar cell parameters. Sol. Energy Mater. Sol. Cells 79, 507–517 (2003)CrossRef Saad, M., Kassis, A.: Effect of interface recombination on solar cell parameters. Sol. Energy Mater. Sol. Cells 79, 507–517 (2003)CrossRef
go back to reference Shan, B., Cho, K.: First principles study of work functions of single wall carbon nanotubes. Phys. Rev. Lett. 94, 236602 (2005)ADSCrossRef Shan, B., Cho, K.: First principles study of work functions of single wall carbon nanotubes. Phys. Rev. Lett. 94, 236602 (2005)ADSCrossRef
go back to reference Straus, D.A., Tzolov, M., Kuo, T.F., Yin, A., Xu, J.M.: Photocurrent response of the carbon nanotube–silicon heterojunction array. IET Circuits Devices Syst. 1, 200–204 (2007)CrossRef Straus, D.A., Tzolov, M., Kuo, T.F., Yin, A., Xu, J.M.: Photocurrent response of the carbon nanotube–silicon heterojunction array. IET Circuits Devices Syst. 1, 200–204 (2007)CrossRef
go back to reference Sze, S.M.: Physics of Semiconductor Devices, 2nd edn. Wiley, New York (1981) Sze, S.M.: Physics of Semiconductor Devices, 2nd edn. Wiley, New York (1981)
go back to reference Tans, S.J., Devoret, M.H., Dai, H., Thess, A., Smalley, R.E., Georliga, L.J., Dekker, C.: Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474–477 (1997)ADSCrossRef Tans, S.J., Devoret, M.H., Dai, H., Thess, A., Smalley, R.E., Georliga, L.J., Dekker, C.: Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474–477 (1997)ADSCrossRef
go back to reference Tzolov, M.B., Kuo, T.F., Straus, D.A., Yin, A., Xu, J.: Carbon Nanotube−Silicon Heterojunction Arrays and Infrared Photocurrent Responses. J. Phys. Chem. C 111, 5800–5804 (2007)CrossRef Tzolov, M.B., Kuo, T.F., Straus, D.A., Yin, A., Xu, J.: Carbon Nanotube−Silicon Heterojunction Arrays and Infrared Photocurrent Responses. J. Phys. Chem. C 111, 5800–5804 (2007)CrossRef
go back to reference Vivien, L., Anglaret, E., Riehl, D., Hache, F., Bacou, F., Andrieux, M., Lafonta, F., Journet, C., Goze, C., Brunet, M., Bernier, P.: Optical limiting properties of singlewall carbon nanotubes. Opt. Commun. 174, 271–275 (2000)ADSCrossRef Vivien, L., Anglaret, E., Riehl, D., Hache, F., Bacou, F., Andrieux, M., Lafonta, F., Journet, C., Goze, C., Brunet, M., Bernier, P.: Optical limiting properties of singlewall carbon nanotubes. Opt. Commun. 174, 271–275 (2000)ADSCrossRef
go back to reference Wei, J., Jia, Y., Shu, Q., Gu, Z., Wang, K., Zhuang, D., Zhang, G., Wang, Z., Luo, J., Cao, A., Wu, D.: Double-walled carbon nanotube solar cells. Nano Lett. 8, 2317–2321 (2007)ADSCrossRef Wei, J., Jia, Y., Shu, Q., Gu, Z., Wang, K., Zhuang, D., Zhang, G., Wang, Z., Luo, J., Cao, A., Wu, D.: Double-walled carbon nanotube solar cells. Nano Lett. 8, 2317–2321 (2007)ADSCrossRef
go back to reference Wadhwa, P., Liu, B., McCarthy, M.A., Wu, Z., Rinzler, A.G.: Electronic junction control in a nanotube-semiconductor Schottky junction solar cell. Nano Lett. 10, 5001–5005 (2010)ADSCrossRef Wadhwa, P., Liu, B., McCarthy, M.A., Wu, Z., Rinzler, A.G.: Electronic junction control in a nanotube-semiconductor Schottky junction solar cell. Nano Lett. 10, 5001–5005 (2010)ADSCrossRef
go back to reference Yao, Y., Ye, F., Qi, X.L., Zhang, S.C., Fang, Z.: Spin-orbit gap of graphene: first-principles calculations. Phys. Rev. B 75, 041401 (2007)ADSCrossRef Yao, Y., Ye, F., Qi, X.L., Zhang, S.C., Fang, Z.: Spin-orbit gap of graphene: first-principles calculations. Phys. Rev. B 75, 041401 (2007)ADSCrossRef
go back to reference Yuan, X., Tang, L., Liu, S., Wang, P., Chen, Z., Zhang, C., Liu, Y., Wang, W., Zou, Y., Liu, C., Guo, N., Zou, J., Zhou, P., Hu, W., Xiu, F.: Arrayed van der Waals vertical heterostructures based on 2D GaSe grown by molecular beam epitaxy. Nano Lett. 15, 3571–3577 (2015)ADSCrossRef Yuan, X., Tang, L., Liu, S., Wang, P., Chen, Z., Zhang, C., Liu, Y., Wang, W., Zou, Y., Liu, C., Guo, N., Zou, J., Zhou, P., Hu, W., Xiu, F.: Arrayed van der Waals vertical heterostructures based on 2D GaSe grown by molecular beam epitaxy. Nano Lett. 15, 3571–3577 (2015)ADSCrossRef
go back to reference Yuan, X., Tang, L., Wang, P., Chen, Z., Zou, Y., Su, X., Zhang, C., Liu, Y., Wang, W., Liu, C., Chen, F., Zou, J., Zhou, P., Hu, W., Xiu, F.: Wafer-scale arrayed p–n junctions based on few-layer epitaxial GaTe. Nano Res. 8, 3332–3341 (2015)CrossRef Yuan, X., Tang, L., Wang, P., Chen, Z., Zou, Y., Su, X., Zhang, C., Liu, Y., Wang, W., Liu, C., Chen, F., Zou, J., Zhou, P., Hu, W., Xiu, F.: Wafer-scale arrayed p–n junctions based on few-layer epitaxial GaTe. Nano Res. 8, 3332–3341 (2015)CrossRef
go back to reference Yuan, H., Wang, X., Lian, B., Zhang, H., Fang, X., Shen, B., Xu, G., Xu, Y., Zhang, S.C., Hwang, H.Y.: Generation and electric control of spin-valley-coupled circular photogalvanic current in WSe2. Nat. Nanotechnol. 9, 851–857 (2014)ADSCrossRef Yuan, H., Wang, X., Lian, B., Zhang, H., Fang, X., Shen, B., Xu, G., Xu, Y., Zhang, S.C., Hwang, H.Y.: Generation and electric control of spin-valley-coupled circular photogalvanic current in WSe2. Nat. Nanotechnol. 9, 851–857 (2014)ADSCrossRef
Metadata
Title
A numerical study on the influence of interface recombination on performance of carbon nanotube/GaAs solar cells
Authors
Hossein Movla
Sajjad Ghaffari
Elham Rezaei
Publication date
01-08-2016
Publisher
Springer US
Published in
Optical and Quantum Electronics / Issue 8/2016
Print ISSN: 0306-8919
Electronic ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-016-0656-1

Other articles of this Issue 8/2016

Optical and Quantum Electronics 8/2016 Go to the issue