Skip to main content
Top
Published in: Numerical Algorithms 1/2021

14-02-2020 | Original Paper

A numerically efficient variational algorithm to solve a fractional nonlinear elastic string equation

Author: Jorge E. Macías-Díaz

Published in: Numerical Algorithms | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, we propose a fractional extension of the one-dimensional nonlinear vibration problem on an elastic string. The fractional problem is governed by a hyperbolic partial differential equation that considers a nonlinear function of spatial derivatives of the Riesz type and constant damping. Initial and homogeneous Dirichlet boundary conditions are imposed on a bounded interval of the real line. We show that the problem can be expressed in variational form and propose a Hamiltonian function associated to the system. We prove that the total energy of the system is constant in the absence of damping, and it is non-increasing otherwise. Some boundedness properties of the solutions are established mathematically. Motivated by these facts, we design a finite-difference discretization of the continuous model based on the use of fractional-order centered differences. The discrete scheme has also a variational structure, and we propose a discrete form of the Hamiltonian function. As the continuous counterpart, we prove rigorously that the discrete total energy is conserved in the absence of damping, and dissipated when the damping coefficient is positive. The scheme is a second-order consistent discretization of the continuous model. Moreover, we prove the stability and quadratic convergence of the numerical model using a discrete form of the energy method. We provide some computer simulations using an implementation of our scheme to illustrate the validity of the conservative/dissipative properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Ben-Yu, G., Pascual, P.J., Rodriguez, M.J., Vázquez, L.: Numerical solution of the sine-Gordon equation. Appl. Math. Comput. 18(1), 1–14 (1986)MathSciNetMATH Ben-Yu, G., Pascual, P.J., Rodriguez, M.J., Vázquez, L.: Numerical solution of the sine-Gordon equation. Appl. Math. Comput. 18(1), 1–14 (1986)MathSciNetMATH
4.
go back to reference Cui, M.: Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation. Numer. Algor. 62(3), 383–409 (2013)MathSciNetMATHCrossRef Cui, M.: Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation. Numer. Algor. 62(3), 383–409 (2013)MathSciNetMATHCrossRef
5.
go back to reference Dehghan, M., Abbaszadeh, M., Mohebbi, A.: Analysis of a meshless method for the time fractional diffusion-wave equation. Numer. Algor. 73(2), 445–476 (2016)MathSciNetMATHCrossRef Dehghan, M., Abbaszadeh, M., Mohebbi, A.: Analysis of a meshless method for the time fractional diffusion-wave equation. Numer. Algor. 73(2), 445–476 (2016)MathSciNetMATHCrossRef
6.
go back to reference Fei, Z., Vázquez, L.: Two energy conserving numerical schemes for the sine-Gordon equation. Appl. Math. Comput. 45(1), 17–30 (1991)MathSciNetMATH Fei, Z., Vázquez, L.: Two energy conserving numerical schemes for the sine-Gordon equation. Appl. Math. Comput. 45(1), 17–30 (1991)MathSciNetMATH
7.
go back to reference Friedman, A.: Foundations of Modern Analysis. Courier Corporation, New York (1970)MATH Friedman, A.: Foundations of Modern Analysis. Courier Corporation, New York (1970)MATH
8.
go back to reference Furihata, D.: Finite-difference schemes for nonlinear wave equation that inherit energy conservation property. J. Comput. Appl. Math. 134(1), 37–57 (2001)MathSciNetMATHCrossRef Furihata, D.: Finite-difference schemes for nonlinear wave equation that inherit energy conservation property. J. Comput. Appl. Math. 134(1), 37–57 (2001)MathSciNetMATHCrossRef
9.
go back to reference Furihata, D., Matsuo, T.: Discrete Variational Derivative Method: A Structure-Preserving Numerical Method for Partial Differential Equations. CRC Press, New York (2010)MATHCrossRef Furihata, D., Matsuo, T.: Discrete Variational Derivative Method: A Structure-Preserving Numerical Method for Partial Differential Equations. CRC Press, New York (2010)MATHCrossRef
10.
go back to reference Furihata, D., Sato, S., Matsuo, T.: A novel discrete variational derivative method using“average-difference methods”. JSIAM Lett. 8, 81–84 (2016)MathSciNetMATHCrossRef Furihata, D., Sato, S., Matsuo, T.: A novel discrete variational derivative method using“average-difference methods”. JSIAM Lett. 8, 81–84 (2016)MathSciNetMATHCrossRef
11.
go back to reference Garrappa, R.: Trapezoidal methods for fractional differential equations: Theoretical and computational aspects. Math. Comput. Simul. 110, 96–112 (2015)MathSciNetCrossRef Garrappa, R.: Trapezoidal methods for fractional differential equations: Theoretical and computational aspects. Math. Comput. Simul. 110, 96–112 (2015)MathSciNetCrossRef
12.
go back to reference Garrappa, R., Moret, I., Popolizio, M.: Solving the time-fractional Schrödinger equation by Krylov projection methods. J. Comput. Phys. 293, 115–134 (2015)MathSciNetMATHCrossRef Garrappa, R., Moret, I., Popolizio, M.: Solving the time-fractional Schrödinger equation by Krylov projection methods. J. Comput. Phys. 293, 115–134 (2015)MathSciNetMATHCrossRef
13.
go back to reference Garrappa, R., Moret, I., Popolizio, M.: On the time-fractional Schrodinger̈ equation: Theoretical analysis and numerical solution by matrix Mittag-Leffler functions. Comput. Math. Appl. 74(5), 977–992 (2017)MathSciNetMATHCrossRef Garrappa, R., Moret, I., Popolizio, M.: On the time-fractional Schrodinger̈ equation: Theoretical analysis and numerical solution by matrix Mittag-Leffler functions. Comput. Math. Appl. 74(5), 977–992 (2017)MathSciNetMATHCrossRef
14.
go back to reference Glöckle, W.G., Nonnenmacher, T.F.: A fractional calculus approach to self-similar protein dynamics. Biophys. J. 68(1), 46–53 (1995)CrossRef Glöckle, W.G., Nonnenmacher, T.F.: A fractional calculus approach to self-similar protein dynamics. Biophys. J. 68(1), 46–53 (1995)CrossRef
15.
go back to reference Huang, J., Tang, Y., Vázquez, L., Yang, J.: Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algor. 64(4), 707–720 (2013)MathSciNetMATHCrossRef Huang, J., Tang, Y., Vázquez, L., Yang, J.: Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algor. 64(4), 707–720 (2013)MathSciNetMATHCrossRef
16.
go back to reference Ibrahimbegovic, A., Mamouri, S.: Energy conserving/decaying implicit time-stepping scheme for nonlinear dynamics of three-dimensional beams undergoing finite rotations. Comput. Methods Appl. Mech. Eng. 191(37-38), 4241–4258 (2002)MATHCrossRef Ibrahimbegovic, A., Mamouri, S.: Energy conserving/decaying implicit time-stepping scheme for nonlinear dynamics of three-dimensional beams undergoing finite rotations. Comput. Methods Appl. Mech. Eng. 191(37-38), 4241–4258 (2002)MATHCrossRef
17.
go back to reference Ide, T.: Some energy preserving finite element schemes based on the discrete variational derivative method. Appl. Math. Comput. 175(1), 277–296 (2006)MathSciNetMATH Ide, T.: Some energy preserving finite element schemes based on the discrete variational derivative method. Appl. Math. Comput. 175(1), 277–296 (2006)MathSciNetMATH
18.
go back to reference Ide, T., Okada, M.: Numerical simulation for a nonlinear partial differential equation with variable coefficients by means of the discrete variational derivative method. J. Comput. Appl. Math. 194(2), 425–459 (2006)MathSciNetMATHCrossRef Ide, T., Okada, M.: Numerical simulation for a nonlinear partial differential equation with variable coefficients by means of the discrete variational derivative method. J. Comput. Appl. Math. 194(2), 425–459 (2006)MathSciNetMATHCrossRef
19.
go back to reference Ishikawa, A., Yaguchi, T.: Application of the variational principle to deriving energy-preserving schemes for the Hamilton equation. JSIAM Lett. 8, 53–56 (2016)MathSciNetMATHCrossRef Ishikawa, A., Yaguchi, T.: Application of the variational principle to deriving energy-preserving schemes for the Hamilton equation. JSIAM Lett. 8, 53–56 (2016)MathSciNetMATHCrossRef
20.
go back to reference Koeller, R.: Applications of fractional calculus to the theory of viscoelasticity. ASME, Transactions. J.f Appl. Mech. (ISSN 0021-8936)(51), 299–307 (1984)MathSciNetMATHCrossRef Koeller, R.: Applications of fractional calculus to the theory of viscoelasticity. ASME, Transactions. J.f Appl. Mech. (ISSN 0021-8936)(51), 299–307 (1984)MathSciNetMATHCrossRef
21.
go back to reference Kuramae, H., Matsuo, T.: An alternating discrete variational derivative method for coupled partial differential equations. JSIAM Lett. 4, 29–32 (2012)MathSciNetMATHCrossRef Kuramae, H., Matsuo, T.: An alternating discrete variational derivative method for coupled partial differential equations. JSIAM Lett. 4, 29–32 (2012)MathSciNetMATHCrossRef
23.
go back to reference Laursen, T., Chawla, V.: Design of energy conserving algorithms for frictionless dynamic contact problems. Int. J. Numer. Methods Eng. 40(5), 863–886 (1997)MathSciNetMATHCrossRef Laursen, T., Chawla, V.: Design of energy conserving algorithms for frictionless dynamic contact problems. Int. J. Numer. Methods Eng. 40(5), 863–886 (1997)MathSciNetMATHCrossRef
24.
go back to reference Liu, F., Zhuang, P., Turner, I., Anh, V., Burrage, K.: A semi-alternating direction method for a 2-D fractional FitzHugh–Nagumo monodomain model on an approximate irregular domain. J. Comput. Phys. 293, 252–263 (2015)MathSciNetMATHCrossRef Liu, F., Zhuang, P., Turner, I., Anh, V., Burrage, K.: A semi-alternating direction method for a 2-D fractional FitzHugh–Nagumo monodomain model on an approximate irregular domain. J. Comput. Phys. 293, 252–263 (2015)MathSciNetMATHCrossRef
25.
go back to reference Macías-Díaz, J.E.: A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives. J. Comput. Phys. 351, 40–58 (2017)MathSciNetMATHCrossRef Macías-Díaz, J.E.: A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives. J. Comput. Phys. 351, 40–58 (2017)MathSciNetMATHCrossRef
26.
go back to reference Macías-Díaz, J.E.: An explicit dissipation-preserving method for Riesz space-fractional nonlinear wave equations in multiple dimensions. Commun. Nonlinear Sci. Numer. Simul. 59, 67–87 (2018)MathSciNetMATHCrossRef Macías-Díaz, J.E.: An explicit dissipation-preserving method for Riesz space-fractional nonlinear wave equations in multiple dimensions. Commun. Nonlinear Sci. Numer. Simul. 59, 67–87 (2018)MathSciNetMATHCrossRef
27.
go back to reference Macías-Díaz, J.E.: Numerical simulation of the nonlinear dynamics of harmonically driven Riesz-fractional extensions of the Fermi–Pasta–Ulam chains. Commun. Nonlinear Sci. Numer. Simul. 55, 248–264 (2018)MathSciNetMATHCrossRef Macías-Díaz, J.E.: Numerical simulation of the nonlinear dynamics of harmonically driven Riesz-fractional extensions of the Fermi–Pasta–Ulam chains. Commun. Nonlinear Sci. Numer. Simul. 55, 248–264 (2018)MathSciNetMATHCrossRef
28.
go back to reference Macías-Díaz, J.E.: On the solution of a Riesz space-fractional nonlinear wave equation through an efficient and energy-invariant scheme. Int. J. Comput. Math. 96 (2), 337–361 (2019)MathSciNetCrossRef Macías-Díaz, J.E.: On the solution of a Riesz space-fractional nonlinear wave equation through an efficient and energy-invariant scheme. Int. J. Comput. Math. 96 (2), 337–361 (2019)MathSciNetCrossRef
29.
go back to reference Macías-Díaz, J.E., Hendy, A.S., De Staelen, R.H.: A compact fourth-order in space energy-preserving method for Riesz space-fractional nonlinear wave equations. Appl. Math. Comput. 325, 1–14 (2018)MathSciNetMATH Macías-Díaz, J.E., Hendy, A.S., De Staelen, R.H.: A compact fourth-order in space energy-preserving method for Riesz space-fractional nonlinear wave equations. Appl. Math. Comput. 325, 1–14 (2018)MathSciNetMATH
30.
go back to reference Macías-Díaz, J.E., Hendy, A.S., De Staelen, R.H.: A pseudo energy-invariant method for relativistic wave equations with Riesz space-fractional derivatives. Comput. Phys. Commun. 224, 98–107 (2018)MathSciNetCrossRef Macías-Díaz, J.E., Hendy, A.S., De Staelen, R.H.: A pseudo energy-invariant method for relativistic wave equations with Riesz space-fractional derivatives. Comput. Phys. Commun. 224, 98–107 (2018)MathSciNetCrossRef
31.
go back to reference Matsuo, T.: Dissipative/conservative Galerkin method using discrete partial derivatives for nonlinear evolution equations. J. Comput. Appl. Math. 218(2), 506–521 (2008)MathSciNetMATHCrossRef Matsuo, T.: Dissipative/conservative Galerkin method using discrete partial derivatives for nonlinear evolution equations. J. Comput. Appl. Math. 218(2), 506–521 (2008)MathSciNetMATHCrossRef
32.
go back to reference Matsuo, T., Furihata, D.: Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations. J. Comput. Phys. 171(2), 425–447 (2001)MathSciNetMATHCrossRef Matsuo, T., Furihata, D.: Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations. J. Comput. Phys. 171(2), 425–447 (2001)MathSciNetMATHCrossRef
33.
go back to reference Namias, V.: The fractional order Fourier transform and its application to quantum mechanics. IMA J. Appl. Math. 25(3), 241–265 (1980)MathSciNetMATHCrossRef Namias, V.: The fractional order Fourier transform and its application to quantum mechanics. IMA J. Appl. Math. 25(3), 241–265 (1980)MathSciNetMATHCrossRef
34.
go back to reference Narasimha, R.: Non-linear vibration of an elastic string. J. Sound Vib. 8(1), 134–146 (1968)MATHCrossRef Narasimha, R.: Non-linear vibration of an elastic string. J. Sound Vib. 8(1), 134–146 (1968)MATHCrossRef
35.
go back to reference Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci., 2006 (2006) Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci., 2006 (2006)
36.
go back to reference Pen-Yu, K.: Numerical methods for incompressible viscous flow. Sci. Sin. 20, 287–304 (1977)MathSciNet Pen-Yu, K.: Numerical methods for incompressible viscous flow. Sci. Sin. 20, 287–304 (1977)MathSciNet
37.
go back to reference Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Elsevier (1998) Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Elsevier (1998)
38.
go back to reference Povstenko, Y.: Theory of thermoelasticity based on the space-time-fractional heat conduction equation. Physica Scripta 2009(T136), 014017 (2009)CrossRef Povstenko, Y.: Theory of thermoelasticity based on the space-time-fractional heat conduction equation. Physica Scripta 2009(T136), 014017 (2009)CrossRef
39.
go back to reference Romero, I., Armero, F.: An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy–momentum conserving scheme in dynamics. Int. J. Numer. Methods Eng. 54 (12), 1683–1716 (2002)MathSciNetMATHCrossRef Romero, I., Armero, F.: An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy–momentum conserving scheme in dynamics. Int. J. Numer. Methods Eng. 54 (12), 1683–1716 (2002)MathSciNetMATHCrossRef
40.
go back to reference Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Physica A: Stat. Mech. Appl. 284(1), 376–384 (2000)MathSciNetCrossRef Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Physica A: Stat. Mech. Appl. 284(1), 376–384 (2000)MathSciNetCrossRef
41.
42.
go back to reference Suzuki, Y., Ohnawa, M.: Generic formalism and discrete variational derivative method for the two-dimensional vorticity equation. J. Comput. Appl. Math. 296, 690–708 (2016)MathSciNetMATHCrossRef Suzuki, Y., Ohnawa, M.: Generic formalism and discrete variational derivative method for the two-dimensional vorticity equation. J. Comput. Appl. Math. 296, 690–708 (2016)MathSciNetMATHCrossRef
43.
go back to reference Tang, Y.F., Vázquez, L., Zhang, F., Pérez-García, V.: Symplectic methods for the nonlinear Schrödinger equation. Comput. Math. Appl. 32(5), 73–83 (1996)MathSciNetMATHCrossRef Tang, Y.F., Vázquez, L., Zhang, F., Pérez-García, V.: Symplectic methods for the nonlinear Schrödinger equation. Comput. Math. Appl. 32(5), 73–83 (1996)MathSciNetMATHCrossRef
44.
45.
go back to reference Tarasov, V.E., Zaslavsky, G.M.: Conservation laws and Hamilton’s equations for systems with long-range interaction and memory. Commun. Nonlinear Sci. Numer. Simul. 13(9), 1860–1878 (2008)MathSciNetMATHCrossRef Tarasov, V.E., Zaslavsky, G.M.: Conservation laws and Hamilton’s equations for systems with long-range interaction and memory. Commun. Nonlinear Sci. Numer. Simul. 13(9), 1860–1878 (2008)MathSciNetMATHCrossRef
46.
go back to reference Toda, M.: Waves in nonlinear lattice. Prog. Theor. Phys. Suppl. 45, 174–200 (1970)CrossRef Toda, M.: Waves in nonlinear lattice. Prog. Theor. Phys. Suppl. 45, 174–200 (1970)CrossRef
47.
go back to reference Välimäki, V., Pakarinen, J., Erkut, C., Karjalainen, M.: Discrete-time modelling of musical instruments. Reports Progress Phys. 69(1), 1 (2005)CrossRef Välimäki, V., Pakarinen, J., Erkut, C., Karjalainen, M.: Discrete-time modelling of musical instruments. Reports Progress Phys. 69(1), 1 (2005)CrossRef
48.
go back to reference Wang, P., Huang, C.: An energy conservative difference scheme for the nonlinear fractional Schrödinger equations. J. Comput. Phys. 293, 238–251 (2015)MathSciNetMATHCrossRef Wang, P., Huang, C.: An energy conservative difference scheme for the nonlinear fractional Schrödinger equations. J. Comput. Phys. 293, 238–251 (2015)MathSciNetMATHCrossRef
49.
go back to reference Wang, X., Liu, F., Chen, X.: Novel second-order accurate implicit numerical methods for the Riesz space distributed-order advection-dispersion equations. Adv. Math. Phys. 2015, 590435 (2015)MathSciNetMATH Wang, X., Liu, F., Chen, X.: Novel second-order accurate implicit numerical methods for the Riesz space distributed-order advection-dispersion equations. Adv. Math. Phys. 2015, 590435 (2015)MathSciNetMATH
51.
go back to reference Yagdjian, K., Balogh, A.: The maximum principle and sign changing solutions of the hyperbolic equation with the Higgs potential. J. Math. Anal. Appl. 465(1), 403–422 (2018)MathSciNetMATHCrossRef Yagdjian, K., Balogh, A.: The maximum principle and sign changing solutions of the hyperbolic equation with the Higgs potential. J. Math. Anal. Appl. 465(1), 403–422 (2018)MathSciNetMATHCrossRef
52.
go back to reference Yaguchi, T., Matsuo, T., Sugihara, M.: The discrete variational derivative method based on discrete differential forms. J. Comput. Phys. 231(10), 3963–3986 (2012)MathSciNetMATHCrossRef Yaguchi, T., Matsuo, T., Sugihara, M.: The discrete variational derivative method based on discrete differential forms. J. Comput. Phys. 231(10), 3963–3986 (2012)MathSciNetMATHCrossRef
Metadata
Title
A numerically efficient variational algorithm to solve a fractional nonlinear elastic string equation
Author
Jorge E. Macías-Díaz
Publication date
14-02-2020
Publisher
Springer US
Published in
Numerical Algorithms / Issue 1/2021
Print ISSN: 1017-1398
Electronic ISSN: 1572-9265
DOI
https://doi.org/10.1007/s11075-020-00880-2

Other articles of this Issue 1/2021

Numerical Algorithms 1/2021 Go to the issue

Premium Partner