Skip to main content
Top
Published in: The Journal of Supercomputing 8/2019

15-02-2019

A parallel unified transform solver based on domain decomposition for solving linear elliptic PDEs

Authors: E. N. G. Grylonakis, G. A. Gravvanis, C. K. Filelis-Papadopoulos, A. S. Fokas

Published in: The Journal of Supercomputing | Issue 8/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A hybrid approach for the solution of linear elliptic PDEs, based on the unified transform method in conjunction with domain decomposition techniques, is introduced. Given a well-posed boundary value problem, the proposed methodology relies on the derivation of an approximate global relation, which is an equation that couples the finite Fourier transforms of all the boundary values. The computational domain is hierarchically decomposed into several nonoverlapping subdomains; for each of those subdomains, a unique approximate global relation is derived. Then, by introducing a modified Dirichlet-to-Neumann iterative algorithm, it is possible to compute the solution and its normal derivative at the resulting interfaces. By considering several hierarchical levels, higher spatial resolution can be achieved. There are three main advantages associated with the proposed approach. First, since the unified transform is a boundary-based technique, the interior of each subdomain does not need to be discretized; thus, no mesh generation is required. Additionally, the Dirichlet and Neumann values can be computed on the interfaces with high accuracy, using a collocation technique in the complex Fourier plane. Finally, the interface values at each hierarchical level can be computed in parallel by considering a quadtree decomposition in conjunction with the iterative Dirichlet-to-Neumann algorithm. The proposed methodology is analysed both regarding implementation details and computational complexity. Moreover, numerical results are presented, assessing the performance of the solver.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Arabnia HR, Taha TR (1998) A parallel numerical algorithm on a reconfigurable multi-ring network. J Telecommun Syst 10:185–203CrossRef Arabnia HR, Taha TR (1998) A parallel numerical algorithm on a reconfigurable multi-ring network. J Telecommun Syst 10:185–203CrossRef
2.
go back to reference Ashton ACL (2013) The spectral Dirichlet–Neumann map for Laplace’s equation in a convex polygon. SIAM J Math Anal 45(6):3575–3591MathSciNetCrossRefMATH Ashton ACL (2013) The spectral Dirichlet–Neumann map for Laplace’s equation in a convex polygon. SIAM J Math Anal 45(6):3575–3591MathSciNetCrossRefMATH
3.
go back to reference Babuska I, Guo B (2000) Optimal estimates for lower and upper bounds of approximation errors in the p-version of the finite element method in two dimensions. Numer Math 85(2):219–255MathSciNetCrossRefMATH Babuska I, Guo B (2000) Optimal estimates for lower and upper bounds of approximation errors in the p-version of the finite element method in two dimensions. Numer Math 85(2):219–255MathSciNetCrossRefMATH
4.
go back to reference Balasubramanian P, Arabnia HR (2014) Computation of error resiliency of Muller C-element. In: Proceedings on International Conference on Computational Science and Computational Intelligence, pp 179–180 Balasubramanian P, Arabnia HR (2014) Computation of error resiliency of Muller C-element. In: Proceedings on International Conference on Computational Science and Computational Intelligence, pp 179–180
5.
go back to reference Bhandarkar SM, Arabnia HR (1995) The REFINE multiprocessor-theoretical properties and algorithms. Parallel Comput 21(11):1783–1806CrossRef Bhandarkar SM, Arabnia HR (1995) The REFINE multiprocessor-theoretical properties and algorithms. Parallel Comput 21(11):1783–1806CrossRef
6.
go back to reference Bjorck A (2015) Numerical methods in matrix computations. Texts in Applied Mathematics. Springer, BerlinCrossRefMATH Bjorck A (2015) Numerical methods in matrix computations. Texts in Applied Mathematics. Springer, BerlinCrossRefMATH
7.
8.
9.
go back to reference Chazelle B, Dobkin D (1985) Optimal convex decompositions. In: Toussaint G (ed) Computational geometry. North-Holland, Amsterdam, pp 63–133CrossRef Chazelle B, Dobkin D (1985) Optimal convex decompositions. In: Toussaint G (ed) Computational geometry. North-Holland, Amsterdam, pp 63–133CrossRef
11.
go back to reference Colbrook MJ, Flyer N, Fornberg B (2018) On the Fokas method for the solution of elliptic problems in both convex and non-convex polygonal domains. J Comput Phys 374:996–1016MathSciNetCrossRefMATH Colbrook MJ, Flyer N, Fornberg B (2018) On the Fokas method for the solution of elliptic problems in both convex and non-convex polygonal domains. J Comput Phys 374:996–1016MathSciNetCrossRefMATH
12.
13.
go back to reference Davis C-IR, Fornberg B (2014) A spectrally accurate numerical implementation of the Fokas transform method for Helmholtz-type PDEs. Complex Var Elliptic Equ 59(4):564–577MathSciNetCrossRefMATH Davis C-IR, Fornberg B (2014) A spectrally accurate numerical implementation of the Fokas transform method for Helmholtz-type PDEs. Complex Var Elliptic Equ 59(4):564–577MathSciNetCrossRefMATH
14.
go back to reference Elliotis M, Georgiou G, Xenophontos C (2005) Solving Laplacian problems with boundary singularities: a comparison of a singular boundary integral method with the p/hp version of the finite element method. Appl Math Comput 169:485–499MathSciNetMATH Elliotis M, Georgiou G, Xenophontos C (2005) Solving Laplacian problems with boundary singularities: a comparison of a singular boundary integral method with the p/hp version of the finite element method. Appl Math Comput 169:485–499MathSciNetMATH
15.
go back to reference Fernandez A, Baleanu D, Fokas AS (2018) Solving PDEs of fractional order using the unified transform method. Appl Math Comput 339:738–749MathSciNet Fernandez A, Baleanu D, Fokas AS (2018) Solving PDEs of fractional order using the unified transform method. Appl Math Comput 339:738–749MathSciNet
16.
17.
go back to reference Fokas AS (2001) Two-dimensional linear PDEs in a convex polygon. Proc R Soc Lond Ser A 457:371–393CrossRefMATH Fokas AS (2001) Two-dimensional linear PDEs in a convex polygon. Proc R Soc Lond Ser A 457:371–393CrossRefMATH
19.
20.
go back to reference Fornberg B, Flyer N (2011) A numerical implementation of Fokas boundary integral approach: Laplace’s equation on a polygonal domain. Proc R Soc A 467:2083–3003MathSciNetCrossRefMATH Fornberg B, Flyer N (2011) A numerical implementation of Fokas boundary integral approach: Laplace’s equation on a polygonal domain. Proc R Soc A 467:2083–3003MathSciNetCrossRefMATH
21.
go back to reference Franceschini A, Paludetto Magri V, Ferronato M, Janna C (2018) A robust multilevel approximate inverse preconditioner for symmetric positive definite matrices. SIAM J Matrix Anal Appl 39:123–147MathSciNetCrossRefMATH Franceschini A, Paludetto Magri V, Ferronato M, Janna C (2018) A robust multilevel approximate inverse preconditioner for symmetric positive definite matrices. SIAM J Matrix Anal Appl 39:123–147MathSciNetCrossRefMATH
22.
go back to reference Fulton S, Fokas AS, Xenophontos C (2004) An analytical method for linear elliptic PDEs and its numerical implementation. J Comput Appl Math 167:465–483MathSciNetCrossRefMATH Fulton S, Fokas AS, Xenophontos C (2004) An analytical method for linear elliptic PDEs and its numerical implementation. J Comput Appl Math 167:465–483MathSciNetCrossRefMATH
23.
go back to reference Grylonakis E-NG, Filelis-Papadopoulos CK, Gravvanis GA (2015) A note on solving the generalized Dirichlet to Neumann map on irregular polygons using Generic Factored Approximate Sparse Inverses. CMES Comput Model Eng Sci 109(6):505–517 Grylonakis E-NG, Filelis-Papadopoulos CK, Gravvanis GA (2015) A note on solving the generalized Dirichlet to Neumann map on irregular polygons using Generic Factored Approximate Sparse Inverses. CMES Comput Model Eng Sci 109(6):505–517
25.
go back to reference Grylonakis E-NG, Filelis-Papadopoulos CK, Gravvanis GA (2018) A class of unified transform techniques for solving linear elliptic PDEs in convex polygons. Appl Numer Math 129:159–180MathSciNetCrossRefMATH Grylonakis E-NG, Filelis-Papadopoulos CK, Gravvanis GA (2018) A class of unified transform techniques for solving linear elliptic PDEs in convex polygons. Appl Numer Math 129:159–180MathSciNetCrossRefMATH
26.
go back to reference Grylonakis E-NG, Filelis-Papadopoulos CK, Gravvanis GA, Fokas AS (2019) An iterative spatial-stepping numerical method for linear elliptic PDEs using the Unified Transform. J Comput Appl Math 352:194–209MathSciNetCrossRefMATH Grylonakis E-NG, Filelis-Papadopoulos CK, Gravvanis GA, Fokas AS (2019) An iterative spatial-stepping numerical method for linear elliptic PDEs using the Unified Transform. J Comput Appl Math 352:194–209MathSciNetCrossRefMATH
27.
go back to reference Grylonakis E-NG, Filelis-Papadopoulos CK, Gravvanis GA, Fokas AS (2019) An adaptive complex collocation method for solving linear elliptic PDEs in regular convex polygons based on the unified transform. Numer Math Theory Methods Appl 12(2):348–369MathSciNetCrossRef Grylonakis E-NG, Filelis-Papadopoulos CK, Gravvanis GA, Fokas AS (2019) An adaptive complex collocation method for solving linear elliptic PDEs in regular convex polygons based on the unified transform. Numer Math Theory Methods Appl 12(2):348–369MathSciNetCrossRef
29.
go back to reference Janna C, Castelletto N, Ferronato M (2015) The effect of graph partitioning techniques on parallel Block FSAI preconditioning: a computational study. Numer Algorithms 68(4):813–836MathSciNetCrossRefMATH Janna C, Castelletto N, Ferronato M (2015) The effect of graph partitioning techniques on parallel Block FSAI preconditioning: a computational study. Numer Algorithms 68(4):813–836MathSciNetCrossRefMATH
30.
go back to reference Jayashree HV, Thapliyal H, Arabnia HR, Agrawal VK (2016) Ancilla-input and Garbage-output Optimized Design of a Reversible Quantum Integer Multiplier. J Supercomput 72(4):1477–1493CrossRef Jayashree HV, Thapliyal H, Arabnia HR, Agrawal VK (2016) Ancilla-input and Garbage-output Optimized Design of a Reversible Quantum Integer Multiplier. J Supercomput 72(4):1477–1493CrossRef
31.
go back to reference Jiri K, Rozloznik M, Tuma M (2017) An adaptive multilevel factorized sparse approximate inverse preconditioning. Adv Eng Softw 113:19–24CrossRef Jiri K, Rozloznik M, Tuma M (2017) An adaptive multilevel factorized sparse approximate inverse preconditioning. Adv Eng Softw 113:19–24CrossRef
32.
go back to reference Kyziropoulos PE, Filelis-Papadopoulos CK, Gravvanis GA (2018) A class of symmetric factored approximate inverses and hybrid two-level solver. Int J Comput Methods 15(2):1850050MathSciNetCrossRefMATH Kyziropoulos PE, Filelis-Papadopoulos CK, Gravvanis GA (2018) A class of symmetric factored approximate inverses and hybrid two-level solver. Int J Comput Methods 15(2):1850050MathSciNetCrossRefMATH
33.
go back to reference Makaratzis AT, Filelis-Papadopoulos CK, Gravvanis GA (2016) Parallel multilevel recursive approximate inverse techniques for solving general sparse linear systems. J Supercomput 72(6):2259–2282CrossRef Makaratzis AT, Filelis-Papadopoulos CK, Gravvanis GA (2016) Parallel multilevel recursive approximate inverse techniques for solving general sparse linear systems. J Supercomput 72(6):2259–2282CrossRef
34.
go back to reference Mathew T (2008) Domain decomposition methods for the numerical solution of partial differential equations. Springer, BerlinCrossRefMATH Mathew T (2008) Domain decomposition methods for the numerical solution of partial differential equations. Springer, BerlinCrossRefMATH
35.
go back to reference Moutafis BE, Filelis-Papadopoulos CK, Gravvanis GA (2017) Parallel multi-projection preconditioned methods based on semi-aggregation techniques. J Comput Sci 22:45–54MathSciNetCrossRef Moutafis BE, Filelis-Papadopoulos CK, Gravvanis GA (2017) Parallel multi-projection preconditioned methods based on semi-aggregation techniques. J Comput Sci 22:45–54MathSciNetCrossRef
36.
go back to reference Moutafis BE, Filelis-Papadopoulos CK, Gravvanis GA (2018) Parallel Schur complement techniques based on multiprojection methods. SIAM J Sci Comput 40(4):634–654MathSciNetCrossRefMATH Moutafis BE, Filelis-Papadopoulos CK, Gravvanis GA (2018) Parallel Schur complement techniques based on multiprojection methods. SIAM J Sci Comput 40(4):634–654MathSciNetCrossRefMATH
37.
go back to reference Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes. The art of scientific computing, 3rd edn. Cambridge University Press, CambridgeMATH Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes. The art of scientific computing, 3rd edn. Cambridge University Press, CambridgeMATH
38.
go back to reference Quarteroni A (2014) Numerical models for differential problems (MS&A), 2nd edn. Springer, Berlin Quarteroni A (2014) Numerical models for differential problems (MS&A), 2nd edn. Springer, Berlin
39.
go back to reference Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefMATH Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefMATH
41.
go back to reference Sifalakis AG, Fokas AS, Fulton S, Saridakis YG (2008) The generalized Dirichlet–Neumann map for linear elliptic PDEs and its numerical implementation. J Comput Appl Math 219(1):9–34MathSciNetCrossRefMATH Sifalakis AG, Fokas AS, Fulton S, Saridakis YG (2008) The generalized Dirichlet–Neumann map for linear elliptic PDEs and its numerical implementation. J Comput Appl Math 219(1):9–34MathSciNetCrossRefMATH
42.
go back to reference Toselli A, Widlund O (2005) Domain decomposition methods—algorithms and theory. Springer, BerlinCrossRefMATH Toselli A, Widlund O (2005) Domain decomposition methods—algorithms and theory. Springer, BerlinCrossRefMATH
43.
go back to reference Valafar H, Arabnia HR, Williams G (2004) Distributed global optimization and its development on the multiring network. Int J Neural Parallel Sci Comput 12(4):465–490MathSciNetMATH Valafar H, Arabnia HR, Williams G (2004) Distributed global optimization and its development on the multiring network. Int J Neural Parallel Sci Comput 12(4):465–490MathSciNetMATH
45.
go back to reference Xi Y, Li R, Saad Y (2016) An algebraic multilevel preconditioner with low-rank corrections for sparse symmetric matrices. SIAM J Matrix Anal Appl 37(1):235–259MathSciNetCrossRefMATH Xi Y, Li R, Saad Y (2016) An algebraic multilevel preconditioner with low-rank corrections for sparse symmetric matrices. SIAM J Matrix Anal Appl 37(1):235–259MathSciNetCrossRefMATH
46.
go back to reference Zhu JZ, Zienkiewicz OC (1988) Adaptive techniques in the finite element method. Commun Appl Numer Methods 4:197–204CrossRefMATH Zhu JZ, Zienkiewicz OC (1988) Adaptive techniques in the finite element method. Commun Appl Numer Methods 4:197–204CrossRefMATH
47.
48.
go back to reference Zienkiewicz OC, Taylor OL, Zhu JZ (2013) The finite element method: its basis and fundamentals, 7th edn. Butterworth-Heinemann, OxfordMATH Zienkiewicz OC, Taylor OL, Zhu JZ (2013) The finite element method: its basis and fundamentals, 7th edn. Butterworth-Heinemann, OxfordMATH
Metadata
Title
A parallel unified transform solver based on domain decomposition for solving linear elliptic PDEs
Authors
E. N. G. Grylonakis
G. A. Gravvanis
C. K. Filelis-Papadopoulos
A. S. Fokas
Publication date
15-02-2019
Publisher
Springer US
Published in
The Journal of Supercomputing / Issue 8/2019
Print ISSN: 0920-8542
Electronic ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-019-02772-2

Other articles of this Issue 8/2019

The Journal of Supercomputing 8/2019 Go to the issue

Premium Partner