Skip to main content
Top
Published in: Wireless Personal Communications 4/2021

14-04-2021

A Partial CSI Estimation Approach for Downlink FDD massive-MIMO System with Different Base Transceiver Station Topologies

Authors: Marwah Abdulrazzaq Naser, Muntadher Qasim Alsabah, Montadar Abas Taher

Published in: Wireless Personal Communications | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Massive multiple-input multiple-output (massive-MIMO) is a promising technology for next generation wireless communications systems due to its capability to increase the data rate and meet the enormous ongoing data traffic explosion. However, in non-reciprocal channels, such as those encountered in frequency division duplex (FDD) systems, channel state information (CSI) estimation using downlink (DL) training sequence is to date very challenging issue, especially when the channel exhibits a shorter coherence time. In particular, the availability of sufficiently accurate CSI at the base transceiver station (BTS) allows an efficient precoding design in the DL transmission to be achieved, and thus, reliable communication systems can be obtained. In order to achieve the aforementioned objectives, this paper presents a feasible DL training sequence design based on a partial CSI estimation approach for an FDD massive-MIMO system with a shorter coherence time. To this end, a threshold-based approach is proposed for a suitable DL pilot selection by exploring the statistical information of the channel covariance matrix. The mean square error of the proposed design is derived, and the achievable sum rate and bit-error-rate for maximum ratio transmitter and regularized zero forcing precoding is investigated over different BTS topologies with uniform linear array and uniform rectangular array. The results show that a feasible performance in the DL FDD massive-MIMO systems can be achieved even when a large number of antenna elements are deployed by the BTS and a shorter coherence time is considered.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The subscript (sim) stands for the Monte Carlo simulation while the subscript (an) stands for the analytical form.
 
Literature
1.
go back to reference Zhang, Z., Xiao, Y., Ma, Z., Xiao, M., Ding, Z., Lei, X., et al. (2019). 6G wireless networks: Vision, requirements, architecture, and key technologies. IEEE Vehicular Technology Magazine, 14(3), 28–41.CrossRef Zhang, Z., Xiao, Y., Ma, Z., Xiao, M., Ding, Z., Lei, X., et al. (2019). 6G wireless networks: Vision, requirements, architecture, and key technologies. IEEE Vehicular Technology Magazine, 14(3), 28–41.CrossRef
2.
go back to reference Yang, P., Xiao, Y., Xiao, M., & Li, S. (2019). 6G wireless communications: Vision and potential techniques. IEEE Network, 33(4), 70–75.MathSciNetCrossRef Yang, P., Xiao, Y., Xiao, M., & Li, S. (2019). 6G wireless communications: Vision and potential techniques. IEEE Network, 33(4), 70–75.MathSciNetCrossRef
3.
go back to reference Giordani, M., Polese, M., Mezzavilla, M., Rangan, S., & Zorzi, M. (2020). Toward 6G networks: Use cases and technologies. IEEE Communications Magazine, 58(3), 55–61.CrossRef Giordani, M., Polese, M., Mezzavilla, M., Rangan, S., & Zorzi, M. (2020). Toward 6G networks: Use cases and technologies. IEEE Communications Magazine, 58(3), 55–61.CrossRef
4.
go back to reference Dang, S., Amin, O., Shihada, B., & Alouini, M.-S. (2020). What should 6G be? Nature Electronics, 3(1), 20–29.CrossRef Dang, S., Amin, O., Shihada, B., & Alouini, M.-S. (2020). What should 6G be? Nature Electronics, 3(1), 20–29.CrossRef
5.
go back to reference Lu, Y., & Zheng, X. (2020). 6G: A survey on technologies, scenarios, challenges, and the related issues. Journal of Industrial Information Integration, 19,.CrossRef Lu, Y., & Zheng, X. (2020). 6G: A survey on technologies, scenarios, challenges, and the related issues. Journal of Industrial Information Integration, 19,.CrossRef
6.
go back to reference Akyildiz, I.F., Kak, A., & Nie, S. (2020). 6G and beyond: The future of wireless communications systems. IEEE Access, vol. 8, pp. 133 995 Akyildiz, I.F., Kak, A., & Nie, S. (2020). 6G and beyond: The future of wireless communications systems. IEEE Access, vol. 8, pp. 133 995
7.
go back to reference Zhang, S., Xiang, C., & Xu, S. (2020). 6G: Connecting everything by 1000 times price reduction. IEEE Open Journal of Vehicular Technology, 1, 107–115.CrossRef Zhang, S., Xiang, C., & Xu, S. (2020). 6G: Connecting everything by 1000 times price reduction. IEEE Open Journal of Vehicular Technology, 1, 107–115.CrossRef
8.
go back to reference Gui, G., Liu, M., Tang, F., Kato, N., & Adachi, F. (2020). 6G: Opening new horizons for integration of comfort, security, and intelligence. IEEE Wireless Communications, 27(5), 126–132.CrossRef Gui, G., Liu, M., Tang, F., Kato, N., & Adachi, F. (2020). 6G: Opening new horizons for integration of comfort, security, and intelligence. IEEE Wireless Communications, 27(5), 126–132.CrossRef
9.
go back to reference Tariq, F., Khandaker, M. R., Wong, K.-K., Imran, M. A., Bennis, M., & Debbah, M. (2020). A speculative study on 6G. IEEE Wireless Communications, 27(4), 118–125.CrossRef Tariq, F., Khandaker, M. R., Wong, K.-K., Imran, M. A., Bennis, M., & Debbah, M. (2020). A speculative study on 6G. IEEE Wireless Communications, 27(4), 118–125.CrossRef
10.
go back to reference Han, C., Jornet, J. M., & Akyildiz, I. (2018).“Ultra-massive MIMO channel modeling for graphene-enabled terahertz-band communications. In 2018 IEEE 87th vehicular technology conference (VTC Spring). IEEE (pp. 1–5). Han, C., Jornet, J. M., & Akyildiz, I. (2018).“Ultra-massive MIMO channel modeling for graphene-enabled terahertz-band communications. In 2018 IEEE 87th vehicular technology conference (VTC Spring). IEEE (pp. 1–5).
11.
go back to reference De Carvalho, E., Ali, A., Amiri, A., Angjelichinoski, M., & Heath, R. W. (2020). Non-stationarities in extra-large-scale massive MIMO. IEEE Wireless Communications, 27(4), 74–80.CrossRef De Carvalho, E., Ali, A., Amiri, A., Angjelichinoski, M., & Heath, R. W. (2020). Non-stationarities in extra-large-scale massive MIMO. IEEE Wireless Communications, 27(4), 74–80.CrossRef
12.
go back to reference Ngo, H. Q., Larsson, E. G., & Marzetta, T. L. (2013). Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Transactions on Communications, 61(4), 1436–1449.CrossRef Ngo, H. Q., Larsson, E. G., & Marzetta, T. L. (2013). Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Transactions on Communications, 61(4), 1436–1449.CrossRef
13.
go back to reference Larsson, E. G., Edfors, O., Tufvesson, F., & Marzetta, T. L. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.CrossRef Larsson, E. G., Edfors, O., Tufvesson, F., & Marzetta, T. L. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.CrossRef
14.
go back to reference Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE journal of Selected Topics in Signal Processing, 8(5), 742–758.CrossRef Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE journal of Selected Topics in Signal Processing, 8(5), 742–758.CrossRef
15.
go back to reference Marzetta, T. L. (2015). Massive MIMO: An introduction. Bell Labs Technical Journal, 20, 11–22.CrossRef Marzetta, T. L. (2015). Massive MIMO: An introduction. Bell Labs Technical Journal, 20, 11–22.CrossRef
16.
go back to reference Marzetta, T. L., Larsson, E. G., Yang, H., & Ngo, H. Q. (2016). Fundamentals of Massive MIMO. Cambridge University Press. Marzetta, T. L., Larsson, E. G., Yang, H., & Ngo, H. Q. (2016). Fundamentals of Massive MIMO. Cambridge University Press.
17.
go back to reference Medbo, J., Börner, K., Haneda, K., Hovinen, V., Imai, T., Järvelainen, J., Jämsä, T., Karttunen, A., Kusume, K., & Kyröläinen et al. J. (2014). Channel modelling for the fifth generation mobile communications. In The 8th European conference on antennas and propagation (EuCAP 2014). IEEE (pp. 219–223). Medbo, J., Börner, K., Haneda, K., Hovinen, V., Imai, T., Järvelainen, J., Jämsä, T., Karttunen, A., Kusume, K., & Kyröläinen et al. J. (2014). Channel modelling for the fifth generation mobile communications. In The 8th European conference on antennas and propagation (EuCAP 2014). IEEE (pp. 219–223).
18.
go back to reference Martínez, À. O., De Carvalho, E., & Nielsen, J. Ø. (2014Towards very large aperture massive MIMO: A measurement based study. In 2014 IEEE Globecom workshops (GC Wkshps). IEEE (pp. 281–286). Martínez, À. O., De Carvalho, E., & Nielsen, J. Ø. (2014Towards very large aperture massive MIMO: A measurement based study. In 2014 IEEE Globecom workshops (GC Wkshps). IEEE (pp. 281–286).
19.
go back to reference Jose, J., Ashikhmin, A., Marzetta, T. L., & Vishwanath, S. (2011). Pilot contamination and precoding in multi-cell TDD systems. IEEE Transactions on Wireless Communications, 10(8), 2640–2651.CrossRef Jose, J., Ashikhmin, A., Marzetta, T. L., & Vishwanath, S. (2011). Pilot contamination and precoding in multi-cell TDD systems. IEEE Transactions on Wireless Communications, 10(8), 2640–2651.CrossRef
20.
go back to reference Yang, H., & Marzetta, T.L. (2013). Total energy efficiency of cellular large scale antenna system multiple access mobile networks. In 2013 IEEE online conference on green communications (OnlineGreenComm). IEEE (pp. 27–32). Yang, H., & Marzetta, T.L. (2013). Total energy efficiency of cellular large scale antenna system multiple access mobile networks. In 2013 IEEE online conference on green communications (OnlineGreenComm). IEEE (pp. 27–32).
21.
go back to reference Hoydis, J., Ten Brink, S., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE Journal on selected Areas in Communications, 31(2), 160–171.CrossRef Hoydis, J., Ten Brink, S., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE Journal on selected Areas in Communications, 31(2), 160–171.CrossRef
22.
go back to reference Müller, R. R., Cottatellucci, L., & Vehkapera, M. (2014). Blind pilot decontamination. IEEE Journal of Selected Topics in Signal Processing, 8(5), 773–786.CrossRef Müller, R. R., Cottatellucci, L., & Vehkapera, M. (2014). Blind pilot decontamination. IEEE Journal of Selected Topics in Signal Processing, 8(5), 773–786.CrossRef
23.
go back to reference Björnson, E., Sanguinetti, L., Hoydis, J., & Debbah, M. (2015). Optimal design of energy-efficient multi-user MIMO systems: Is massive MIMO the answer? IEEE Transactions on Wireless Communications, 14(6), 3059–3075.CrossRef Björnson, E., Sanguinetti, L., Hoydis, J., & Debbah, M. (2015). Optimal design of energy-efficient multi-user MIMO systems: Is massive MIMO the answer? IEEE Transactions on Wireless Communications, 14(6), 3059–3075.CrossRef
24.
go back to reference Yin, H., Cottatellucci, L., Gesbert, D., Müller, R. R., & He, G. (2016). Robust pilot decontamination based on joint angle and power domain discrimination. IEEE Transactions on Signal Processing, 64(11), 2990–3003.MathSciNetMATHCrossRef Yin, H., Cottatellucci, L., Gesbert, D., Müller, R. R., & He, G. (2016). Robust pilot decontamination based on joint angle and power domain discrimination. IEEE Transactions on Signal Processing, 64(11), 2990–3003.MathSciNetMATHCrossRef
25.
go back to reference Björnson, E., Hoydis, J., & Sanguinetti, L. (2017). Massive MIMO has unlimited capacity. IEEE Transactions on Wireless Communications, 17(1), 574–590.CrossRef Björnson, E., Hoydis, J., & Sanguinetti, L. (2017). Massive MIMO has unlimited capacity. IEEE Transactions on Wireless Communications, 17(1), 574–590.CrossRef
27.
go back to reference Kaltenberger, F., Jiang, H., Guillaud, M., & Knopp, R. (2010). “Relative channel reciprocity calibration in MIMO/TDD systems,” in Future Network & Mobile Summit, Florence, Italy. IEEE, 16-18 June, pp. 1–10. Kaltenberger, F., Jiang, H., Guillaud, M., & Knopp, R. (2010). “Relative channel reciprocity calibration in MIMO/TDD systems,” in Future Network & Mobile Summit, Florence, Italy. IEEE, 16-18 June, pp. 1–10.
28.
go back to reference Bjrnson, E., Hoydis, J., Kountouris, M., & Debbah, M. (2013).“Hardware impairments in large-scale MISO systems: Energy efficiency, estimation, and capacity limits,” in 18th International Conference on Digital Signal Processing (DSP), July July, pp. 1–6. Bjrnson, E., Hoydis, J., Kountouris, M., & Debbah, M. (2013).“Hardware impairments in large-scale MISO systems: Energy efficiency, estimation, and capacity limits,” in 18th International Conference on Digital Signal Processing (DSP), July July, pp. 1–6.
29.
go back to reference Mi, D., Dianati, M., Zhang, L., Muhaidat, S., & Tafazolli, R. (2017). Massive MIMO performance with imperfect channel reciprocity and channel estimation error. IEEE Transactions on Communications, 65(9), 3734–3749.CrossRef Mi, D., Dianati, M., Zhang, L., Muhaidat, S., & Tafazolli, R. (2017). Massive MIMO performance with imperfect channel reciprocity and channel estimation error. IEEE Transactions on Communications, 65(9), 3734–3749.CrossRef
30.
go back to reference Vieira, J., Rusek, F., Edfors, O., Malkowsky, S., Liu, L., & Tufvesson, F. (2017). Reciprocity calibration for massive MIMO: Proposal, modeling, and validation. IEEE Transactions on Wireless Communications, 16(5), 3042–3056.CrossRef Vieira, J., Rusek, F., Edfors, O., Malkowsky, S., Liu, L., & Tufvesson, F. (2017). Reciprocity calibration for massive MIMO: Proposal, modeling, and validation. IEEE Transactions on Wireless Communications, 16(5), 3042–3056.CrossRef
31.
go back to reference Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. Cambridge University Press. Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. Cambridge University Press.
32.
go back to reference Hassibi, B., & Hochwald, B. M. (2003). How much training is needed in multiple-antenna wireless links? IEEE Transactions on Information Theory, 49(4), 951–963.MATHCrossRef Hassibi, B., & Hochwald, B. M. (2003). How much training is needed in multiple-antenna wireless links? IEEE Transactions on Information Theory, 49(4), 951–963.MATHCrossRef
33.
go back to reference Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., & Tufvesson, F. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.CrossRef Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., & Tufvesson, F. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.CrossRef
34.
go back to reference Björnson, E., Larsson, E. G., & Marzetta, T. L. (2016). Massive MIMO: Ten myths and one critical question. IEEE Communications Magazine, 54(2), 114–123.CrossRef Björnson, E., Larsson, E. G., & Marzetta, T. L. (2016). Massive MIMO: Ten myths and one critical question. IEEE Communications Magazine, 54(2), 114–123.CrossRef
35.
go back to reference Alsabah, M., Vehkapera, M., & O’Farrell, T. (2020). Non-iterative downlink training sequence design based on sum rate maximization in FDD massive MIMO systems. IEEE Access, 8, 108731–108747.CrossRef Alsabah, M., Vehkapera, M., & O’Farrell, T. (2020). Non-iterative downlink training sequence design based on sum rate maximization in FDD massive MIMO systems. IEEE Access, 8, 108731–108747.CrossRef
36.
go back to reference Naser, M. A., Alsabah, M., Mahmmod, B. M., Noordin, N. K., Abdulhussain, S. H., & Baker, T. (2020). Downlink training design for FDD massive MIMO systems in the presence of colored noise. Electronics, 9(12), 2155.CrossRef Naser, M. A., Alsabah, M., Mahmmod, B. M., Noordin, N. K., Abdulhussain, S. H., & Baker, T. (2020). Downlink training design for FDD massive MIMO systems in the presence of colored noise. Electronics, 9(12), 2155.CrossRef
37.
go back to reference Adhikary, A., Nam, J., Ahn, J. Y., & Caire, G. (2013). Joint spatial division and multiplexing: The large-scale array regime. IEEE Transactions on Information Theory, 59(10), 6441–6463.MathSciNetMATHCrossRef Adhikary, A., Nam, J., Ahn, J. Y., & Caire, G. (2013). Joint spatial division and multiplexing: The large-scale array regime. IEEE Transactions on Information Theory, 59(10), 6441–6463.MathSciNetMATHCrossRef
38.
go back to reference Nam, J., Caire, G., & Ha, J. (2017). On the role of transmit correlation diversity in multiuser MIMO systems. IEEE Transactions on Information Theory, 63(1), 336–354.MathSciNetMATHCrossRef Nam, J., Caire, G., & Ha, J. (2017). On the role of transmit correlation diversity in multiuser MIMO systems. IEEE Transactions on Information Theory, 63(1), 336–354.MathSciNetMATHCrossRef
39.
go back to reference Rao, X., & Lau, V. K. (2014). Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems. IEEE Transactions on Signal Processing, 62(12), 3261–3271.MathSciNetMATHCrossRef Rao, X., & Lau, V. K. (2014). Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems. IEEE Transactions on Signal Processing, 62(12), 3261–3271.MathSciNetMATHCrossRef
40.
go back to reference Gao, Z., Dai, L., Wang, Z., & Chen, S. (2015). Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO. IEEE Transactions on Signal Processing, 63(23), 6169–6183.MathSciNetMATHCrossRef Gao, Z., Dai, L., Wang, Z., & Chen, S. (2015). Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO. IEEE Transactions on Signal Processing, 63(23), 6169–6183.MathSciNetMATHCrossRef
41.
go back to reference Gao, Z., Dai, L., Dai, W., Shim, B., & Wang, Z. (2016). Structured compressive sensing-based spatio-temporal joint channel estimation for FDD massive MIMO. IEEE Transactions on Communications, 64(2), 601–617.CrossRef Gao, Z., Dai, L., Dai, W., Shim, B., & Wang, Z. (2016). Structured compressive sensing-based spatio-temporal joint channel estimation for FDD massive MIMO. IEEE Transactions on Communications, 64(2), 601–617.CrossRef
42.
go back to reference Han, Y., Lee, J., & Love, D. J. (2017). Compressed sensing-aided downlink channel training for FDD massive MIMO systems. IEEE Transactions on Communications, 65(7), 2852–2862.CrossRef Han, Y., Lee, J., & Love, D. J. (2017). Compressed sensing-aided downlink channel training for FDD massive MIMO systems. IEEE Transactions on Communications, 65(7), 2852–2862.CrossRef
43.
go back to reference Choi, J., Love, D. J., & Bidigare, P. (2014). Downlink training techniques for FDD massive MIMO systems: Open-loop and closed-loop training with memory. IEEE Journal of Selected Topics in Signal Processing, 8(5), 802–814.CrossRef Choi, J., Love, D. J., & Bidigare, P. (2014). Downlink training techniques for FDD massive MIMO systems: Open-loop and closed-loop training with memory. IEEE Journal of Selected Topics in Signal Processing, 8(5), 802–814.CrossRef
44.
go back to reference Noh, S., Zoltowski, M. D., Sung, Y., & Love, D. J. (2014). Pilot beam pattern design for channel estimation in massive MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 8(5), 787–801.CrossRef Noh, S., Zoltowski, M. D., Sung, Y., & Love, D. J. (2014). Pilot beam pattern design for channel estimation in massive MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 8(5), 787–801.CrossRef
45.
go back to reference So, J., Kim, D., Lee, Y., & Sung, Y. (2015). Pilot signal design for massive MIMO systems: A received signal-to-noise-ratio-based approach. IEEE Signal Processing Letters, 22(5), 549–553.CrossRef So, J., Kim, D., Lee, Y., & Sung, Y. (2015). Pilot signal design for massive MIMO systems: A received signal-to-noise-ratio-based approach. IEEE Signal Processing Letters, 22(5), 549–553.CrossRef
46.
go back to reference Xie, H., Gao, F., Zhang, S., & Jin, S. (2016). A unified transmission strategy for TDD/FDD massive MIMO systems with spatial basis expansion model. IEEE Transactions on Vehicular Technology, 66(4), 3170–3184.CrossRef Xie, H., Gao, F., Zhang, S., & Jin, S. (2016). A unified transmission strategy for TDD/FDD massive MIMO systems with spatial basis expansion model. IEEE Transactions on Vehicular Technology, 66(4), 3170–3184.CrossRef
47.
go back to reference Stein, S. (1987). Fading channel issues in system engineering. IEEE Journal on Selected Areas in Communications, 5(2), 68–89.CrossRef Stein, S. (1987). Fading channel issues in system engineering. IEEE Journal on Selected Areas in Communications, 5(2), 68–89.CrossRef
48.
go back to reference Shiu, D.-S., Foschini, G. J., Gans, M. J., & Kahn, J. M. (2000). Fading correlation and its effect on the capacity of multielement antenna systems. IEEE Transactions on Communications, 48(3), 502–513.CrossRef Shiu, D.-S., Foschini, G. J., Gans, M. J., & Kahn, J. M. (2000). Fading correlation and its effect on the capacity of multielement antenna systems. IEEE Transactions on Communications, 48(3), 502–513.CrossRef
49.
go back to reference Molisch, A. F. (2012). Wireless communications. Wiley. Molisch, A. F. (2012). Wireless communications. Wiley.
50.
go back to reference Abdulhasan, M. Q., Salman, M. I., Ng, C. K., Noordin, N. K., Hashim, S. J., & Hashim, F. (2015). An adaptive threshold feedback compression scheme based on channel quality indicator (cqi) in long term evolution (lte) system. Wireless Personal Communications, 82(4), 2323–2349.CrossRef Abdulhasan, M. Q., Salman, M. I., Ng, C. K., Noordin, N. K., Hashim, S. J., & Hashim, F. (2015). An adaptive threshold feedback compression scheme based on channel quality indicator (cqi) in long term evolution (lte) system. Wireless Personal Communications, 82(4), 2323–2349.CrossRef
51.
go back to reference Abdulhasan, M.Q., Salman, M.I., Ng, C.K., Noordin, N.K., Hashim, S.J., & Hashim, F.B. (2013). Approximate linear minimum mean square error estimation based on channel quality indicator feedback in LTE systems. In 2013 IEEE 11th Malaysia international conference on communications (MICC). IEEE (pp. 446–451). Abdulhasan, M.Q., Salman, M.I., Ng, C.K., Noordin, N.K., Hashim, S.J., & Hashim, F.B. (2013). Approximate linear minimum mean square error estimation based on channel quality indicator feedback in LTE systems. In 2013 IEEE 11th Malaysia international conference on communications (MICC). IEEE (pp. 446–451).
52.
go back to reference Abdulhasan, M.Q., Salman, M.I., Ng, C.K., Noordin, N.K., Hashim, S.J., & Hashim, F.B. (2013). A channel quality indicator (CQI) prediction scheme using feed forward neural network (FF-NN) technique for MU-MIMO LTE system. In 2014 IEEE 2nd international symposium on telecommunication technologies (ISTT). IEEE, 2014 (pp. 17–22). Abdulhasan, M.Q., Salman, M.I., Ng, C.K., Noordin, N.K., Hashim, S.J., & Hashim, F.B. (2013). A channel quality indicator (CQI) prediction scheme using feed forward neural network (FF-NN) technique for MU-MIMO LTE system. In 2014 IEEE 2nd international symposium on telecommunication technologies (ISTT). IEEE, 2014 (pp. 17–22).
53.
go back to reference Abdulhasan, M. Q., Salman, M. I., Ng, C. K., Noordin, N. K., Hashim, S. J., & Hashim, F. (2014). Review of channel quality indicator estimation schemes for multi-user MIMO in 3GPP LTE/LTE-A systems. KSII Transactions on Internet & Information Systems, 8(6), 1848–1868.CrossRef Abdulhasan, M. Q., Salman, M. I., Ng, C. K., Noordin, N. K., Hashim, S. J., & Hashim, F. (2014). Review of channel quality indicator estimation schemes for multi-user MIMO in 3GPP LTE/LTE-A systems. KSII Transactions on Internet & Information Systems, 8(6), 1848–1868.CrossRef
54.
go back to reference Salman, M. I., Abdulhasan, M. Q., Ng, C. K., Noordin, N. K., Ali, B. M., & Sali, A. (2017). A partial feedback reporting scheme for LTE mobile video transmission with QoS provisioning. Computer Networks, 112, 108–121.CrossRef Salman, M. I., Abdulhasan, M. Q., Ng, C. K., Noordin, N. K., Ali, B. M., & Sali, A. (2017). A partial feedback reporting scheme for LTE mobile video transmission with QoS provisioning. Computer Networks, 112, 108–121.CrossRef
55.
go back to reference Kay, S. (1993). Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall. Kay, S. (1993). Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall.
56.
go back to reference Goldsmith, A. (2005). Wireless communications. Cambridge University Press. Goldsmith, A. (2005). Wireless communications. Cambridge University Press.
57.
go back to reference Biguesh, M., & Gershman, A. B. (2006). Training-based MIMO channel estimation: a study of estimator tradeoffs and optimal training signals. IEEE Transactions on Signal Processing, 54(3), 884–893.MATHCrossRef Biguesh, M., & Gershman, A. B. (2006). Training-based MIMO channel estimation: a study of estimator tradeoffs and optimal training signals. IEEE Transactions on Signal Processing, 54(3), 884–893.MATHCrossRef
58.
go back to reference Salman, M. I., Abdulhasan, M. Q., Ng, C. K., Noordin, N. K., Sali, A., & Mohd Ali, B. (2013). Radio resource management for green 3g pp long term evolution cellular networks: Review and trade-offs. IETE Technical Review, 30(3), 257–269.CrossRef Salman, M. I., Abdulhasan, M. Q., Ng, C. K., Noordin, N. K., Sali, A., & Mohd Ali, B. (2013). Radio resource management for green 3g pp long term evolution cellular networks: Review and trade-offs. IETE Technical Review, 30(3), 257–269.CrossRef
59.
go back to reference Petersen, K. B., & Michael, S. P. (2008). The matrix cookbook. University of Denmark, 7(15), 1704–1714. Petersen, K. B., & Michael, S. P. (2008). The matrix cookbook. University of Denmark, 7(15), 1704–1714.
60.
go back to reference Chizhik, D., Ling, J., Wolniansky, P. W., Valenzuela, R. A., Costa, N., & Huber, K. (2003). Multiple-input-multiple-output measurements and modeling in manhattan. IEEE Journal on Selected Areas in Communications, 21(3), 321–331.CrossRef Chizhik, D., Ling, J., Wolniansky, P. W., Valenzuela, R. A., Costa, N., & Huber, K. (2003). Multiple-input-multiple-output measurements and modeling in manhattan. IEEE Journal on Selected Areas in Communications, 21(3), 321–331.CrossRef
61.
go back to reference Yu, K., Bengtsson, M., Ottersten, B., McNamara, D., Karlsson, P., & Beach, M. (2004). Modeling of wide-band MIMO radio channels based on NLoS indoor measurements. IEEE Transactions on Vehicular Technology, 53(3), 655–665.CrossRef Yu, K., Bengtsson, M., Ottersten, B., McNamara, D., Karlsson, P., & Beach, M. (2004). Modeling of wide-band MIMO radio channels based on NLoS indoor measurements. IEEE Transactions on Vehicular Technology, 53(3), 655–665.CrossRef
62.
go back to reference Wallace, J. W., & Jensen, M. A. (2001). Measured characteristics of the MIMO wireless channel. In IEEE 54th vehicular technology conference. VTC Fall 2001, (Vol. 4, pp. 2038–2042). Wallace, J. W., & Jensen, M. A. (2001). Measured characteristics of the MIMO wireless channel. In IEEE 54th vehicular technology conference. VTC Fall 2001, (Vol. 4, pp. 2038–2042).
63.
go back to reference Gao, X., Edfors, O., Rusek, F., & Tufvesson, F. (2015). Massive MIMO performance evaluation based on measured propagation data. IEEE Transactions on Wireless Communications, 14(7), 3899–3911.CrossRef Gao, X., Edfors, O., Rusek, F., & Tufvesson, F. (2015). Massive MIMO performance evaluation based on measured propagation data. IEEE Transactions on Wireless Communications, 14(7), 3899–3911.CrossRef
64.
go back to reference Jakes, W.C., & Cox, D.C. (1994). Microwave mobile communications. Wiley-IEEE Press Jakes, W.C., & Cox, D.C. (1994). Microwave mobile communications. Wiley-IEEE Press
65.
go back to reference Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2017). Cell-free massive MIMO versus small cells. IEEE Transactions on Wireless Communications, 16(3), 1834–1850.CrossRef Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2017). Cell-free massive MIMO versus small cells. IEEE Transactions on Wireless Communications, 16(3), 1834–1850.CrossRef
66.
go back to reference Pouttu, A., Burkhardt, F., Patachia, C., Mendes, L., Brazil, G.R., Pirttikangas, S., Jou, E., Kuvaja, P., Finland, F.T., Heikkilä et al. M. (2020). 6G white paper on validation and trials for verticals towards 2030s1. preprint Pouttu, A., Burkhardt, F., Patachia, C., Mendes, L., Brazil, G.R., Pirttikangas, S., Jou, E., Kuvaja, P., Finland, F.T., Heikkilä et al. M. (2020). 6G white paper on validation and trials for verticals towards 2030s1. preprint
Metadata
Title
A Partial CSI Estimation Approach for Downlink FDD massive-MIMO System with Different Base Transceiver Station Topologies
Authors
Marwah Abdulrazzaq Naser
Muntadher Qasim Alsabah
Montadar Abas Taher
Publication date
14-04-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08423-1

Other articles of this Issue 4/2021

Wireless Personal Communications 4/2021 Go to the issue