Skip to main content
Top
Published in:

01-12-2016 | Original Article

A penalty box approach for approximation betweenness and closeness centrality algorithms

Authors: Sushant S. Khopkar, Rakesh Nagi, Gregory Tauer

Published in: Social Network Analysis and Mining | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Centrality metrics are used to find important nodes in social networks. In the days of ever-increasing social network sizes, it becomes more and more difficult to compute centrality scores of all nodes quickly. One of the ways to tackle this problem is to use approximation centrality algorithms using sampling techniques. Also, in situations where finding only high value individuals/important nodes is the primary objective, accuracy of rank ordering of nodes is especially important. We propose a new sampling method similar to Tabu search, called “penalty box approach,” which can be used for approximation closeness and betweenness algorithms. On a variety of graphs we experimentally demonstrate that this new method when combined with previously known methods, such as random sampling and linear scaling, produces better results. The evaluation is done based on two measures that assess quality of rank ordered lists of nodes when compared against the true lists based on their closeness and betweenness scores. Effects of graph characteristics on the parameters of the proposed method are also analyzed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Agarwal M, Singh RR, Chaudhary S, Iyengar S (2015) An efficient estimation of a node’s betweenness. In: Complex networks VI. Springer, New York. pp. 111–121 Agarwal M, Singh RR, Chaudhary S, Iyengar S (2015) An efficient estimation of a node’s betweenness. In: Complex networks VI. Springer, New York. pp. 111–121
go back to reference Bader DA, Madduri K (2006) Parallel algorithms for evaluating centrality indices in real-world networks. In: Parallel processing, 2006. ICPP 2006. International Conference on, IEEE. pp. 539–550 Bader DA, Madduri K (2006) Parallel algorithms for evaluating centrality indices in real-world networks. In: Parallel processing, 2006. ICPP 2006. International Conference on, IEEE. pp. 539–550
go back to reference Bader DA, Kintali S, Madduri K, Mihail M (2007) Approximating betweenness centrality. In: Algorithms and models for the web-graph. Springer, New York, pp. 124–137 Bader DA, Kintali S, Madduri K, Mihail M (2007) Approximating betweenness centrality. In: Algorithms and models for the web-graph. Springer, New York, pp. 124–137
go back to reference Brandes U (2001) A faster algorithm for betweenness centrality. J Math Sociol 25(2):163–177CrossRefMATH Brandes U (2001) A faster algorithm for betweenness centrality. J Math Sociol 25(2):163–177CrossRefMATH
go back to reference Dutot A, Guinand F, Olivier D, Pigné Y et al. (2007) Graphstream: a tool for bridging the gap between complex systems and dynamic graphs. In: Emergent properties in natural and artificial complex systems. Satellite conference within the 4th European conference on complex systems (ECCS’2007) Dutot A, Guinand F, Olivier D, Pigné Y et al. (2007) Graphstream: a tool for bridging the gap between complex systems and dynamic graphs. In: Emergent properties in natural and artificial complex systems. Satellite conference within the 4th European conference on complex systems (ECCS’2007)
go back to reference Erdos D, Ishakian V, Bestavros A, Terzi E (2014) A divide-and-conquer algorithm for betweenness centrality. arXiv preprint arXiv:14064173 Erdos D, Ishakian V, Bestavros A, Terzi E (2014) A divide-and-conquer algorithm for betweenness centrality. arXiv preprint arXiv:14064173
go back to reference Freeman L (1979) Centrality in social networks conceptual clarification. Soc Netw 1(3):215–239CrossRef Freeman L (1979) Centrality in social networks conceptual clarification. Soc Netw 1(3):215–239CrossRef
go back to reference Geisberger R, Sanders P, Schultes D (2008) Better approximation of betweenness centrality. In: ALENEX, SIAM, pp. 90–100 Geisberger R, Sanders P, Schultes D (2008) Better approximation of betweenness centrality. In: ALENEX, SIAM, pp. 90–100
go back to reference Gkorou D, Pouwelse J, Epema D, Kielmann T, van Kreveld M, Niessen W (2010) Efficient approximate computation of betweenness centrality. In: 16th annual conference of the advanced school for computing and imaging (ASCI 2010) Gkorou D, Pouwelse J, Epema D, Kielmann T, van Kreveld M, Niessen W (2010) Efficient approximate computation of betweenness centrality. In: 16th annual conference of the advanced school for computing and imaging (ASCI 2010)
go back to reference Heidemann J, Klier M, Probst F (2010) Identifying key users in online social networks: a pagerank based approach. Proc 31st information system international conference, StLouis, MO, USA Heidemann J, Klier M, Probst F (2010) Identifying key users in online social networks: a pagerank based approach. Proc 31st information system international conference, StLouis, MO, USA
go back to reference Jacob R, Koschützki D, Lehmann K, Peeters L, Tenfelde-Podehl D (2005) Algorithms for centrality indices. Netw Anal pp. 62–82 Jacob R, Koschützki D, Lehmann K, Peeters L, Tenfelde-Podehl D (2005) Algorithms for centrality indices. Netw Anal pp. 62–82
go back to reference Jippes E, Achterkamp MC, Brand PL, Kiewiet DJ, Pols J, van Engelen JM (2010) Disseminating educational innovations in health care practice: training versus social networks. Soc Sci & Med 70(10):1509–1517CrossRef Jippes E, Achterkamp MC, Brand PL, Kiewiet DJ, Pols J, van Engelen JM (2010) Disseminating educational innovations in health care practice: training versus social networks. Soc Sci & Med 70(10):1509–1517CrossRef
go back to reference Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp. 137–146 Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp. 137–146
go back to reference Kourtellis N, Alahakoon T, Simha R, Iamnitchi A, Tripathi R (2013) Identifying high betweenness centrality nodes in large social networks. Soc Netw Anal Min 3(4):899–914CrossRef Kourtellis N, Alahakoon T, Simha R, Iamnitchi A, Tripathi R (2013) Identifying high betweenness centrality nodes in large social networks. Soc Netw Anal Min 3(4):899–914CrossRef
go back to reference Krebs VE (2002) Mapping networks of terrorist cells. Connections 24(3):43–52 Krebs VE (2002) Mapping networks of terrorist cells. Connections 24(3):43–52
go back to reference Kunegis J (2013) Konect: the koblenz network collection. In: Proceedings of the 22nd international conference on world wide web companion, international world wide web conferences steering committee, pp. 1343–1350 Kunegis J (2013) Konect: the koblenz network collection. In: Proceedings of the 22nd international conference on world wide web companion, international world wide web conferences steering committee, pp. 1343–1350
go back to reference Okamoto K, Chen W, Li XY (2008) Ranking of closeness centrality for large-scale social networks. In: Frontiers in algorithmics, Springer, New York, pp. 186–195 Okamoto K, Chen W, Li XY (2008) Ranking of closeness centrality for large-scale social networks. In: Frontiers in algorithmics, Springer, New York, pp. 186–195
go back to reference Opsahl T, Agneessens F, Skvoretz J (2010) Node centrality in weighted networks: generalizing degree and shortest paths. Soc Netw 32(3):245–251CrossRef Opsahl T, Agneessens F, Skvoretz J (2010) Node centrality in weighted networks: generalizing degree and shortest paths. Soc Netw 32(3):245–251CrossRef
go back to reference Riondato M, Kornaropoulos EM (2014) Fast approximation of betweenness centrality through sampling. In: Proceedings of the 7th ACM international conference on Web search and data mining, ACM, pp. 413–422 Riondato M, Kornaropoulos EM (2014) Fast approximation of betweenness centrality through sampling. In: Proceedings of the 7th ACM international conference on Web search and data mining, ACM, pp. 413–422
go back to reference Wasserman S (1994) Social network analysis: methods and applications. Cambridge University Press, CambridgeCrossRef Wasserman S (1994) Social network analysis: methods and applications. Cambridge University Press, CambridgeCrossRef
go back to reference Watts DJ, Strogatz SH (1998) Collective dynamics of ‘Small-world’ Networks. Nature 393(6684):440–442CrossRef Watts DJ, Strogatz SH (1998) Collective dynamics of ‘Small-world’ Networks. Nature 393(6684):440–442CrossRef
Metadata
Title
A penalty box approach for approximation betweenness and closeness centrality algorithms
Authors
Sushant S. Khopkar
Rakesh Nagi
Gregory Tauer
Publication date
01-12-2016
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2016
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-015-0308-7

Premium Partner