Skip to main content
Top

2024 | OriginalPaper | Chapter

7. A Perturbed Mann-Type Algorithm for Zeros of Maximal Monotone Mappings

Authors : Oumar Abdel Kader Aghrabatt, Aminata D. Diene, Ngalla Djitte

Published in: Mathematics of Computer Science, Cybersecurity and Artificial Intelligence

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Let E be a uniformly convex and uniformly smooth real Banach space and \(E^*\) its dual. Let \(A:E\to E^*\) be a bounded maximal monotone mapping such that \(A^{-1}(0)\neq \emptyset \). We first introduce the algorithm: For given \(x_1\in E\), let \(\{x_n\}\) be generated by the formula: \(x_{n+1}= x_n -\lambda _n J^{-1}Ax_n -\lambda _n\theta _n(x_n-x_1),\,n\geq 1\), where J is the normalized duality mapping from E into \(E^*\) and \(\lambda _n\) and \(\theta _n\) are positive real numbers in \((0,1)\) satisfying suitable conditions. Next, we obtain the strong convergence of the sequence \(\{x_n\}\) to the solution of the equation \(Au=0\) closest to the initial point \(x_1\). Using this result, we deal with the convex minimization problem. Our results improve and unify most of the ones that have been proved in this direction for this important class of nonlinear mappings. Furthermore, our new technique of proof is of independent interest.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Adoum, A. A., Sene, M., Ndiaye, M., Djitte, N., A Mann Type iterative algorithm for bounded and strongly monotone mappings in certain Banach spaces, In: Seck, D., Kangni, K., Nang, P., Salomon Sambou, M. (eds) Nonlinear Analysis, Geometry and ApplicationsTrends in Mathematics. Birkhäuser, Cham, 2023 Adoum, A. A., Sene, M., Ndiaye, M., Djitte, N., A Mann Type iterative algorithm for bounded and strongly monotone mappings in certain Banach spaces, In: Seck, D., Kangni, K., Nang, P., Salomon Sambou, M. (eds) Nonlinear Analysis, Geometry and ApplicationsTrends in Mathematics. Birkhäuser, Cham, 2023
2.
go back to reference Berinde, V., Iterative Approximation of Fixed Points, Lecture Notes in Mathematics, Springer, London, UK, 2007. Berinde, V., Iterative Approximation of Fixed Points, Lecture Notes in Mathematics, Springer, London, UK, 2007.
3.
go back to reference Berinde, V., St. Maruster, I.A. Rus, An abstract point of view on iterative approximation of fixed points of nonself operators, J. Nonlinear Convex Anal. 15 (2014), no. 5, 851–865.MathSciNet Berinde, V., St. Maruster, I.A. Rus, An abstract point of view on iterative approximation of fixed points of nonself operators, J. Nonlinear Convex Anal. 15 (2014), no. 5, 851–865.MathSciNet
4.
go back to reference Browder, F.E., Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc. vol. 73 (1967), 875–882.MathSciNetCrossRef Browder, F.E., Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc. vol. 73 (1967), 875–882.MathSciNetCrossRef
5.
go back to reference Bruck Jr, R. E., A strongly convergent iterative solution of\(0\in U(x)\)for a maximal monotone operatorUin Hilbert spaces, J. Math. Anal. Appl., vol. 48 (1974), 114–126.MathSciNetCrossRef Bruck Jr, R. E., A strongly convergent iterative solution of\(0\in U(x)\)for a maximal monotone operatorUin Hilbert spaces, J. Math. Anal. Appl., vol. 48 (1974), 114–126.MathSciNetCrossRef
7.
go back to reference Reich S.; Strong Convergence theorems for resolvents of accretive operators in Banach spaces, in J. Math. Anal. Appl.183 (1994), 118–120. Reich S.; Strong Convergence theorems for resolvents of accretive operators in Banach spaces, in J. Math. Anal. Appl.183 (1994), 118–120.
8.
go back to reference Censor Y., Reich, S., Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization, Optimization, vol. 37, no. 4 (1996), pp. 323–339.MathSciNetCrossRef Censor Y., Reich, S., Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization, Optimization, vol. 37, no. 4 (1996), pp. 323–339.MathSciNetCrossRef
9.
go back to reference Chidume, C. E., Geometric Properties of Banach Spaces and Nonlinear iterations, vol. 1965 of Lectures Notes in Mathematics, Springer, London, UK, 2009. Chidume, C. E., Geometric Properties of Banach Spaces and Nonlinear iterations, vol. 1965 of Lectures Notes in Mathematics, Springer, London, UK, 2009.
10.
go back to reference Chidume, C. E., Ali Bashir, Approximation of common fixed points for finite families of nonself asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., vol. 326 (2007), pp. 960–973.MathSciNetCrossRef Chidume, C. E., Ali Bashir, Approximation of common fixed points for finite families of nonself asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., vol. 326 (2007), pp. 960–973.MathSciNetCrossRef
11.
go back to reference Chidume, C. E., An approximation method for monotone Lipschitzian operators in Hilbert-spaces, Journal of the Australian Mathematical Society series A-pure mathematics and statistics, vol. 41 (1986), pp. 59–63.MathSciNetCrossRef Chidume, C. E., An approximation method for monotone Lipschitzian operators in Hilbert-spaces, Journal of the Australian Mathematical Society series A-pure mathematics and statistics, vol. 41 (1986), pp. 59–63.MathSciNetCrossRef
12.
go back to reference Chidume, C. E., Convergence theorems for asymptotically pseudo-contractive mappings, Nonlinear Analysis-Theory Methods & Applications, vol. 49 (2002), pp. 1–11.MathSciNetCrossRef Chidume, C. E., Convergence theorems for asymptotically pseudo-contractive mappings, Nonlinear Analysis-Theory Methods & Applications, vol. 49 (2002), pp. 1–11.MathSciNetCrossRef
13.
go back to reference Chidume, C. E., Iterative approximation of fixed points of Lipschitzian strictly pseudo-contractive mappings, Proc. Amer. Math. Soc., vol. 99 (1987), no. 2,pp. 283–288. Chidume, C. E., Iterative approximation of fixed points of Lipschitzian strictly pseudo-contractive mappings, Proc. Amer. Math. Soc., vol. 99 (1987), no. 2,pp. 283–288.
14.
go back to reference Chidume, C. E., Djitte, N., Sene, M., Iterative algorithm for zeros of multivalued accretive operators in certain Banach spaces, Afr. Mat., 26(2015), no. 3–4, 357–368. Chidume, C. E., Djitte, N., Sene, M., Iterative algorithm for zeros of multivalued accretive operators in certain Banach spaces, Afr. Mat., 26(2015), no. 3–4, 357–368.
15.
go back to reference Chidume, C. E., Chidume, C. O., Convergence theorems for fixed points of uniformly continuous generalized Phi-hemi-contractive mappings, J. Math. Anal. Appl., vol. 303 (2005), pp. 545–554.MathSciNetCrossRef Chidume, C. E., Chidume, C. O., Convergence theorems for fixed points of uniformly continuous generalized Phi-hemi-contractive mappings, J. Math. Anal. Appl., vol. 303 (2005), pp. 545–554.MathSciNetCrossRef
16.
go back to reference Chidume, C. E., Chidume, C. O., Convergence theorem for zeros of generalized Phi-quasi-accretive operators, Proc. Amer. Math. Soc., vol. 134 (2006), pp. 243–251.MathSciNetCrossRef Chidume, C. E., Chidume, C. O., Convergence theorem for zeros of generalized Phi-quasi-accretive operators, Proc. Amer. Math. Soc., vol. 134 (2006), pp. 243–251.MathSciNetCrossRef
17.
go back to reference Chidume, C. E., Djitte, N., Iterative algorithm for zeros of boundedm-Accretive nonlinear operators, to appear, J. Nonlinear and convex analysis. Chidume, C. E., Djitte, N., Iterative algorithm for zeros of boundedm-Accretive nonlinear operators, to appear, J. Nonlinear and convex analysis.
18.
go back to reference Chidume, C. E., Djitte, N., Strong convergence theorems for zeros of bounded maximal monotone nonlinear operators, J. Abstract and Applied Analysis, Volume 2012, Article ID 681348, 19 pages, doi:10.1155/2012/681348. Chidume, C. E., Djitte, N., Strong convergence theorems for zeros of bounded maximal monotone nonlinear operators, J. Abstract and Applied Analysis, Volume 2012, Article ID 681348, 19 pages, doi:10.1155/2012/681348.
19.
go back to reference Chidume, C. E., Osilike, M. O., Iterative solutions of nonlinear accretive operator equations in arbitrary Banach spaces, Nonlinear Analysis-Theory Methods & Applications, vol. 36 (1999), pp. 863–872.MathSciNetCrossRef Chidume, C. E., Osilike, M. O., Iterative solutions of nonlinear accretive operator equations in arbitrary Banach spaces, Nonlinear Analysis-Theory Methods & Applications, vol. 36 (1999), pp. 863–872.MathSciNetCrossRef
20.
go back to reference Chidume C. E. and Zegeye H.; Approximate fixed point sequence and convergence theorems for Lipschitz pseudo-contractive maps, Proc. Amer. Math. Soc. 132 (2004), no. 831–840. Chidume C. E. and Zegeye H.; Approximate fixed point sequence and convergence theorems for Lipschitz pseudo-contractive maps, Proc. Amer. Math. Soc. 132 (2004), no. 831–840.
21.
go back to reference Chidume C. E., Mutangadura S. A., An example on the Mann itération method for Lipschitz pseudocontrations, Proc. Amer. Math. Soc. 129 (2001), no. 8, 2359–2363.MathSciNetCrossRef Chidume C. E., Mutangadura S. A., An example on the Mann itération method for Lipschitz pseudocontrations, Proc. Amer. Math. Soc. 129 (2001), no. 8, 2359–2363.MathSciNetCrossRef
22.
go back to reference Chidume C. E., Geometric Properties of Banach spaces and Nonlinear Iterations, Springer Verlag Series: Lecture Notes in Mathematics, Vol.1965 (2009), ISBN 978-1-84882-189-7. Chidume C. E., Geometric Properties of Banach spaces and Nonlinear Iterations, Springer Verlag Series: Lecture Notes in Mathematics, Vol.1965 (2009), ISBN 978-1-84882-189-7.
23.
go back to reference L. Deng, On Chidume’s open question, J. Math. Appl. vol. 174 (1993), no. 2, 441–449.MathSciNet L. Deng, On Chidume’s open question, J. Math. Appl. vol. 174 (1993), no. 2, 441–449.MathSciNet
24.
go back to reference Goebel, K., Reich, S., Uniform convexity, hyperbolic geometry, and nonexpansive mappings. Monographs and Textbooks in Pure and Applied Mathematics, vol. 83, Marcel Dekker, inc., New York, 1984. Goebel, K., Reich, S., Uniform convexity, hyperbolic geometry, and nonexpansive mappings. Monographs and Textbooks in Pure and Applied Mathematics, vol. 83, Marcel Dekker, inc., New York, 1984.
25.
go back to reference G uler. O., On the convergence of the proximal point algorithm for convex minimization, SIAM Journal on Control and Optimization, (1991) vol. 29, no. 2, pp. 403–419. G uler. O., On the convergence of the proximal point algorithm for convex minimization, SIAM Journal on Control and Optimization, (1991) vol. 29, no. 2, pp. 403–419.
26.
go back to reference Kamimura, S., Takahashi, W., Approximating solutions of maximal monotone operators in Hilbert spaces, Journal of Approximation Theory, vol. 106 (2000), no. 2, pp. 226–240. Kamimura, S., Takahashi, W., Approximating solutions of maximal monotone operators in Hilbert spaces, Journal of Approximation Theory, vol. 106 (2000), no. 2, pp. 226–240.
27.
go back to reference Kamimura, S., Takahashi, W., Strong convergence of a proximal-type algorithm in a Banach space, SIAMJ. Optim., vol. 13 (2002), no. 3, pp. 938–945. Kamimura, S., Takahashi, W., Strong convergence of a proximal-type algorithm in a Banach space, SIAMJ. Optim., vol. 13 (2002), no. 3, pp. 938–945.
29.
go back to reference Kohsaka, F., Takahashi, W., Strong convergence of an iterative sequence for maximal monotone operator in Banach space,Abstr. Appl. Annal. 3 (2004) 239–349.MathSciNetCrossRef Kohsaka, F., Takahashi, W., Strong convergence of an iterative sequence for maximal monotone operator in Banach space,Abstr. Appl. Annal. 3 (2004) 239–349.MathSciNetCrossRef
30.
go back to reference Liu, L., Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., vol. 194 (1995), no. 1, pp. 114–125. Liu, L., Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., vol. 194 (1995), no. 1, pp. 114–125.
31.
go back to reference Martinet, B., regularization d’ inéquations variationelles par approximations successives, Revue Francaise d’informatique et de Recherche operationelle,4(1970), 154–159. Martinet, B., regularization d’ inéquations variationelles par approximations successives, Revue Francaise d’informatique et de Recherche operationelle,4(1970), 154–159.
32.
go back to reference Mendy J.T., Sene M., Djitte N., Algorithm for zeros of maximal monotone mappings in classical Banach spaces, Int. J. Math. Anal., Vol. 11, 2017, no. 12, 551–570. Mendy J.T., Sene M., Djitte N., Algorithm for zeros of maximal monotone mappings in classical Banach spaces, Int. J. Math. Anal., Vol. 11, 2017, no. 12, 551–570.
33.
go back to reference Moudafi, A., Alternating CQ-algorithm for convex feasibility and split fixed-point problems, J. Nonlinear Convex Anal. 15 (2004), no. 4, 809–818.MathSciNet Moudafi, A., Alternating CQ-algorithm for convex feasibility and split fixed-point problems, J. Nonlinear Convex Anal. 15 (2004), no. 4, 809–818.MathSciNet
34.
go back to reference Moudafi, A., A relaxed alternating CQ-algorithm for convex feasibility problems, Nonlinear Anal. 79 (2003), 117–121.MathSciNetCrossRef Moudafi, A., A relaxed alternating CQ-algorithm for convex feasibility problems, Nonlinear Anal. 79 (2003), 117–121.MathSciNetCrossRef
35.
go back to reference Moudafi, A., Proximal methods for a class of bilevel monotone equilibrium problems, J. Global Optim. 47 (2010), no. 2, 45–52.MathSciNetCrossRef Moudafi, A., Proximal methods for a class of bilevel monotone equilibrium problems, J. Global Optim. 47 (2010), no. 2, 45–52.MathSciNetCrossRef
36.
go back to reference Moudafi, A., Thera, M., Finding a zero of the sum of two maximal monotone operators, J. Optim. Theory Appl. 94 (1997), no. 2, 425–448.MathSciNetCrossRef Moudafi, A., Thera, M., Finding a zero of the sum of two maximal monotone operators, J. Optim. Theory Appl. 94 (1997), no. 2, 425–448.MathSciNetCrossRef
37.
go back to reference Pascali, D., Sburian, S., Nonlinear mappings of monotone type, Editura Academia Bucuresti, Romania, 1978. Pascali, D., Sburian, S., Nonlinear mappings of monotone type, Editura Academia Bucuresti, Romania, 1978.
38.
go back to reference Qihou, L., The convergence theorems of the sequence of Ishikawa iterates for hemi-contractive mapping, J. Math. Anal. Appl., vol. 148 (1990), pp. 55–62.MathSciNetCrossRef Qihou, L., The convergence theorems of the sequence of Ishikawa iterates for hemi-contractive mapping, J. Math. Anal. Appl., vol. 148 (1990), pp. 55–62.MathSciNetCrossRef
39.
go back to reference Reich, S., A weak convergence theorem for the alternating methods with Bergman distance, in: A. G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, in Lecture notes in pure and Appl. Math., vol. 178 (1996), Dekker, New York. pp. 313–318. Reich, S., A weak convergence theorem for the alternating methods with Bergman distance, in: A. G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, in Lecture notes in pure and Appl. Math., vol. 178 (1996), Dekker, New York. pp. 313–318.
40.
go back to reference Reich, S., Iterative methods for accretive sets, Nonlinear Equations in Abstract Spaces, pp. 317–326, Academic Press, New York, 1978. Reich, S., Iterative methods for accretive sets, Nonlinear Equations in Abstract Spaces, pp. 317–326, Academic Press, New York, 1978.
41.
42.
go back to reference Reich, S., Iterative methods for accretive sets in Banach Spaces, Academic Press, New York, 1978, 317–326. Reich, S., Iterative methods for accretive sets in Banach Spaces, Academic Press, New York, 1978, 317–326.
43.
go back to reference Reich, S., Constructive techniques for accretive and monotone operators, Applied non-linear analysis, Academic Press, New York (1979), pp. 335–345. Reich, S., Constructive techniques for accretive and monotone operators, Applied non-linear analysis, Academic Press, New York (1979), pp. 335–345.
44.
go back to reference Reich, S., and Sabach, S., A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, Journal of Nonlinear and Convex Analysis, vol. 10 (2009), no. 3, pp. 471–485. Reich, S., and Sabach, S., A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, Journal of Nonlinear and Convex Analysis, vol. 10 (2009), no. 3, pp. 471–485.
45.
go back to reference Reich, S., and Sabach, S., Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numerical Functional Analysis and Optimization, vol. 31 (2010), no. 1–3, pp. 22–44. Reich, S., and Sabach, S., Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numerical Functional Analysis and Optimization, vol. 31 (2010), no. 1–3, pp. 22–44.
46.
go back to reference Solodov, M, V., and Svaiter, B. F., Forcing strong convergence of proximal point iterations in a Hilbert space, Mathematical Programming, vol. 87 (2000), pp. 189–202. Solodov, M, V., and Svaiter, B. F., Forcing strong convergence of proximal point iterations in a Hilbert space, Mathematical Programming, vol. 87 (2000), pp. 189–202.
47.
go back to reference Weng, X. L., Fixed point iteration for local striclty pseudo-contractive mappings, Proc. Amer. Math. Soc., vol. 113 (1991), no. 3, 727–731. Weng, X. L., Fixed point iteration for local striclty pseudo-contractive mappings, Proc. Amer. Math. Soc., vol. 113 (1991), no. 3, 727–731.
48.
go back to reference Kamimura, S., Takahashi, W., Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory 106 (2000) 226–240.MathSciNetCrossRef Kamimura, S., Takahashi, W., Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory 106 (2000) 226–240.MathSciNetCrossRef
49.
go back to reference William, K., Shahzad, N., Fixed point theory in distance spaces, Springer Verlag, 2014. William, K., Shahzad, N., Fixed point theory in distance spaces, Springer Verlag, 2014.
50.
go back to reference Xiao, R., Chidume’s open problems and fixed point theorems, Xichuan Daxue Xuebao, vol. 35 (1998), no. 4, pp. 505–508. Xiao, R., Chidume’s open problems and fixed point theorems, Xichuan Daxue Xuebao, vol. 35 (1998), no. 4, pp. 505–508.
51.
go back to reference Rockafellar, R. T., Monotone operator and the proximal point algorithm, SIAM J. Control Optim. 14 (1976) 877–898.MathSciNetCrossRef Rockafellar, R. T., Monotone operator and the proximal point algorithm, SIAM J. Control Optim. 14 (1976) 877–898.MathSciNetCrossRef
52.
53.
go back to reference M. Sene, M. Ndiaye and N. Djitte, A new Krasnoselskii’s type algorithm for zeros of strongly monotone and Lipschitz mappings, CREAT. MATH. INFORM. Volume 31 (2022), No. 1, Pages 109–120.MathSciNetCrossRef M. Sene, M. Ndiaye and N. Djitte, A new Krasnoselskii’s type algorithm for zeros of strongly monotone and Lipschitz mappings, CREAT. MATH. INFORM. Volume 31 (2022), No. 1, Pages 109–120.MathSciNetCrossRef
54.
go back to reference Xu, Z. B., Roach, G. F., Characteristic inequalities for uniformly convex and uniformly smooth Banach space, J. Math. Anal. Appl., vol 157 (1991), pp. 189–210.MathSciNetCrossRef Xu, Z. B., Roach, G. F., Characteristic inequalities for uniformly convex and uniformly smooth Banach space, J. Math. Anal. Appl., vol 157 (1991), pp. 189–210.MathSciNetCrossRef
55.
go back to reference Xu, Z. B., Jiang, Y. L., Roach, G. F., A further necessary and sufficient condition for strong convergence of nonlinear contraction semigroups and of iteration methods for accretive operators in Banach spaces, Proc. Edinburgh Math. Soc., vol. 38 (1995), no. 2, pp. 1–12. Xu, Z. B., Jiang, Y. L., Roach, G. F., A further necessary and sufficient condition for strong convergence of nonlinear contraction semigroups and of iteration methods for accretive operators in Banach spaces, Proc. Edinburgh Math. Soc., vol. 38 (1995), no. 2, pp. 1–12.
56.
go back to reference Xu, H. K., Inequalities in Banach spaces with applications, Nonlinear Anal., Vol. 16 (1991), no. 12, pp. 1127–1138. Xu, H. K., Inequalities in Banach spaces with applications, Nonlinear Anal., Vol. 16 (1991), no. 12, pp. 1127–1138.
57.
go back to reference H. K., Iterative algorithms for nonlinear operators, J. London Math. Soc. 66(2002), no2, 240–256. H. K., Iterative algorithms for nonlinear operators, J. London Math. Soc. 66(2002), no2, 240–256.
58.
go back to reference Xu, Y., Existence and convergence for fixed points of mappings of the asymptotically nonexpansive type, Nonlinear Anal., vol. 16 (1991), pp. 1139–1146.MathSciNetCrossRef Xu, Y., Existence and convergence for fixed points of mappings of the asymptotically nonexpansive type, Nonlinear Anal., vol. 16 (1991), pp. 1139–1146.MathSciNetCrossRef
59.
go back to reference Zegeye, H. Strong convergence theorems for maximal monotone mappings in Banach spaces, J. Math. Anal. Appl.,343 (2008) 663–671.MathSciNetCrossRef Zegeye, H. Strong convergence theorems for maximal monotone mappings in Banach spaces, J. Math. Anal. Appl.,343 (2008) 663–671.MathSciNetCrossRef
60.
go back to reference Zhou, H., Jia, Y., Approximating the zeros of accretive operators by the Ishikawa iteration process, Abstr. Appl. Anal. vol. 1 (1996), no. 2, 153–167.MathSciNetCrossRef Zhou, H., Jia, Y., Approximating the zeros of accretive operators by the Ishikawa iteration process, Abstr. Appl. Anal. vol. 1 (1996), no. 2, 153–167.MathSciNetCrossRef
61.
go back to reference Zhu, L., Iteration solution of nonlinear equations involving m-accretive operators in Banach spaces, J. Math. Anal. Appl., vol. 188 (1994), 410–415.MathSciNetCrossRef Zhu, L., Iteration solution of nonlinear equations involving m-accretive operators in Banach spaces, J. Math. Anal. Appl., vol. 188 (1994), 410–415.MathSciNetCrossRef
Metadata
Title
A Perturbed Mann-Type Algorithm for Zeros of Maximal Monotone Mappings
Authors
Oumar Abdel Kader Aghrabatt
Aminata D. Diene
Ngalla Djitte
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-66222-5_7

Premium Partner