Skip to main content
Top
Published in:

09-04-2022 | Original Article

A Physics-informed and data-driven deep learning approach for wave propagation and its scattering characteristics

Authors: Soo Young Lee, Choon-Su Park, Keonhyeok Park, Hyung Jin Lee, Seungchul Lee

Published in: Engineering with Computers | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Understanding the propagation of waves and their scattering characteristics is critical in various scientific and engineering domains. While the majority of present work is based on numerical approaches, their high computational cost and discontinuity in the entire engineering workflow raise the need to resolve obstacles for fully utilizing the methods in an interactive and end-to-end manner. In this study, we propose a deep learning approach that can simulate the wave propagation and scattering phenomena precisely and efficiently. In particular, we present methods of incorporating physics-based knowledge into the deep learning framework to give the learning process strong inductive biases regarding wave propagation and scattering behaviors. We demonstrate that the proposed method can successfully produce physically valid wave field trajectories induced by random scattering objects. We show that the proposed physics-informed strategy exhibits significantly improved prediction results than purely data-driven methods through quantitative and qualitative evaluation from various angles. Subsequently, we assess the computational efficiency of the proposed method as a neural engine, showing that the proposed approach can significantly accelerate the scientific simulation process compared to the numerical method. Our study delivers the potential of the proposed physics-informed approach to be utilized for real-time, accurate, and interactive scientific analyses in a wide variety of engineering and application disciplines.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kaina N, Lemoult F, Fink M, Lerosey G (2015) Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature 525(7567):77–81CrossRef Kaina N, Lemoult F, Fink M, Lerosey G (2015) Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature 525(7567):77–81CrossRef
2.
go back to reference Cai X, Wang L, Zhao Z, Zhao A, Zhang X, Wu T, Chen H (2016) The mechanical and acoustic properties of two-dimensional pentamode metamaterials with different structural parameters. Appl Phys Lett 109(13):131904CrossRef Cai X, Wang L, Zhao Z, Zhao A, Zhang X, Wu T, Chen H (2016) The mechanical and acoustic properties of two-dimensional pentamode metamaterials with different structural parameters. Appl Phys Lett 109(13):131904CrossRef
3.
go back to reference Cummer SA, Christensen J, Alù A (2016) Controlling sound with acoustic metamaterials. Nat Rev Mater 1(3):1–13CrossRef Cummer SA, Christensen J, Alù A (2016) Controlling sound with acoustic metamaterials. Nat Rev Mater 1(3):1–13CrossRef
4.
go back to reference Bertolotti J, Van Putten EG, Blum C, Lagendijk A, Vos WL, Mosk AP (2012) Non-invasive imaging through opaque scattering layers. Nature 491(7423):232–234CrossRef Bertolotti J, Van Putten EG, Blum C, Lagendijk A, Vos WL, Mosk AP (2012) Non-invasive imaging through opaque scattering layers. Nature 491(7423):232–234CrossRef
5.
go back to reference Yeh H, Mehra R, Ren Z, Antani L, Manocha D, Lin M (2013) Wave-ray coupling for interactive sound propagation in large complex scenes. ACM Trans Graph 32(6):1–11CrossRef Yeh H, Mehra R, Ren Z, Antani L, Manocha D, Lin M (2013) Wave-ray coupling for interactive sound propagation in large complex scenes. ACM Trans Graph 32(6):1–11CrossRef
6.
go back to reference Mehra R, Rungta A, Golas A, Lin M, Manocha D (2015) Wave: Interactive wave-based sound propagation for virtual environments. IEEE Trans Vis Comput Graph 21(4):434–442CrossRef Mehra R, Rungta A, Golas A, Lin M, Manocha D (2015) Wave: Interactive wave-based sound propagation for virtual environments. IEEE Trans Vis Comput Graph 21(4):434–442CrossRef
7.
go back to reference Watanabe K, Pisanò F, Jeremić B (2017) Discretization effects in the finite element simulation of seismic waves in elastic and elastic-plastic media. Eng Comput 33(3):519–545CrossRef Watanabe K, Pisanò F, Jeremić B (2017) Discretization effects in the finite element simulation of seismic waves in elastic and elastic-plastic media. Eng Comput 33(3):519–545CrossRef
8.
go back to reference Carrer J, Solheid B, Trevelyan J, Seaid M (2021) A boundary element method formulation based on the caputo derivative for the solution of the diffusion-wave equation. Eng Anal Bound Elem 122:1–18MathSciNetCrossRefMATH Carrer J, Solheid B, Trevelyan J, Seaid M (2021) A boundary element method formulation based on the caputo derivative for the solution of the diffusion-wave equation. Eng Anal Bound Elem 122:1–18MathSciNetCrossRefMATH
9.
go back to reference Shirron JJ, Giddings TE (2006) A finite element model for acoustic scattering from objects near a fluid–fluid interface. Comput Methods Appl Mech Engrg 196(1–3):279–288CrossRefMATH Shirron JJ, Giddings TE (2006) A finite element model for acoustic scattering from objects near a fluid–fluid interface. Comput Methods Appl Mech Engrg 196(1–3):279–288CrossRefMATH
10.
go back to reference Yeung C, Ng CT (2019) Time-domain spectral finite element method for analysis of torsional guided waves scattering and mode conversion by cracks in pipes. Mech Syst Signal Process 128:305–317CrossRef Yeung C, Ng CT (2019) Time-domain spectral finite element method for analysis of torsional guided waves scattering and mode conversion by cracks in pipes. Mech Syst Signal Process 128:305–317CrossRef
11.
go back to reference Peake M, Trevelyan J, Coates G (2015) Extended isogeometric boundary element method (xibem) for three-dimensional medium-wave acoustic scattering problems. Comput Methods Appl Mech Engrg 284:762–780MathSciNetCrossRefMATH Peake M, Trevelyan J, Coates G (2015) Extended isogeometric boundary element method (xibem) for three-dimensional medium-wave acoustic scattering problems. Comput Methods Appl Mech Engrg 284:762–780MathSciNetCrossRefMATH
12.
go back to reference Pulkki V, Svensson UP (2019) Machine-learning-based estimation and rendering of scattering in virtual reality. J Acoust Soc Am 145(4):2664–2676CrossRef Pulkki V, Svensson UP (2019) Machine-learning-based estimation and rendering of scattering in virtual reality. J Acoust Soc Am 145(4):2664–2676CrossRef
13.
go back to reference Fan Z, Vineet V, Gamper H, Raghuvanshi N (2020) Fast acoustic scattering using convolutional neural networks. In: IEEE Int. Conf. Acoust. Speech Signal Process, pp 171–175 Fan Z, Vineet V, Gamper H, Raghuvanshi N (2020) Fast acoustic scattering using convolutional neural networks. In: IEEE Int. Conf. Acoust. Speech Signal Process, pp 171–175
14.
go back to reference Tang Z, Meng H-Y, Manocha D (2021) Learning acoustic scattering fields for dynamic interactive sound propagation. In: IEEE Conf. Virtual Real. 3D User Interfaces, pp 835–844 Tang Z, Meng H-Y, Manocha D (2021) Learning acoustic scattering fields for dynamic interactive sound propagation. In: IEEE Conf. Virtual Real. 3D User Interfaces, pp 835–844
15.
go back to reference Karpatne A, Atluri G, Faghmous JH, Steinbach M, Banerjee A, Ganguly A, Shekhar S, Samatova N, Kumar V (2017) Theory-guided data science: a new paradigm for scientific discovery from data. IEEE Trans Knowl Data Eng 29(10):2318–2331CrossRef Karpatne A, Atluri G, Faghmous JH, Steinbach M, Banerjee A, Ganguly A, Shekhar S, Samatova N, Kumar V (2017) Theory-guided data science: a new paradigm for scientific discovery from data. IEEE Trans Knowl Data Eng 29(10):2318–2331CrossRef
16.
go back to reference Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707MathSciNetCrossRefMATH Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707MathSciNetCrossRefMATH
17.
19.
go back to reference Wessels H, Weißenfels C, Wriggers P (2020) The neural particle method-an updated lagrangian physics informed neural network for computational fluid dynamics. Comput Methods Appl Mech Engrg 368: 113127MathSciNetCrossRefMATH Wessels H, Weißenfels C, Wriggers P (2020) The neural particle method-an updated lagrangian physics informed neural network for computational fluid dynamics. Comput Methods Appl Mech Engrg 368: 113127MathSciNetCrossRefMATH
20.
go back to reference Sahli Costabal F, Yang Y, Perdikaris P, Hurtado DE, Kuhl E (2020) Physics-informed neural networks for cardiac activation mapping. Front Phys 8:42CrossRef Sahli Costabal F, Yang Y, Perdikaris P, Hurtado DE, Kuhl E (2020) Physics-informed neural networks for cardiac activation mapping. Front Phys 8:42CrossRef
21.
go back to reference Sun L, Gao H, Pan S, Wang J-X (2020) Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Comput Methods Appl Mech Engrg 361: 112732MathSciNetCrossRefMATH Sun L, Gao H, Pan S, Wang J-X (2020) Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Comput Methods Appl Mech Engrg 361: 112732MathSciNetCrossRefMATH
22.
go back to reference Goswami S, Anitescu C, Chakraborty S, Rabczuk T (2020) Transfer learning enhanced physics informed neural network for phase-field modeling of fracture. Theor Appl Fract Mech 106:102447CrossRef Goswami S, Anitescu C, Chakraborty S, Rabczuk T (2020) Transfer learning enhanced physics informed neural network for phase-field modeling of fracture. Theor Appl Fract Mech 106:102447CrossRef
23.
go back to reference Karimpouli S, Tahmasebi P (2020) Physics informed machine learning: seismic wave equation. Geosci Front 11(6):1993–2001CrossRef Karimpouli S, Tahmasebi P (2020) Physics informed machine learning: seismic wave equation. Geosci Front 11(6):1993–2001CrossRef
24.
go back to reference Moseley B, Markham A, Nissen-Meyer T (2020) Solving the wave equation with physics-informed deep learning. arXiv preprint arXiv:2006.11894 Moseley B, Markham A, Nissen-Meyer T (2020) Solving the wave equation with physics-informed deep learning. arXiv preprint arXiv:​2006.​11894
25.
go back to reference Shukla K, Di Leoni PC, Blackshire J, Sparkman D, Karniadakis GE (2020) Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks. J Nondestruct Eval 39(3):1–20CrossRef Shukla K, Di Leoni PC, Blackshire J, Sparkman D, Karniadakis GE (2020) Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks. J Nondestruct Eval 39(3):1–20CrossRef
26.
go back to reference Alkhalifah T, Song C, bin Waheed U, Hao Q (2021) Wavefield solutions from machine learned functions constrained by the helmholtz equation. Artif Intell Geosci 2:11–19 Alkhalifah T, Song C, bin Waheed U, Hao Q (2021) Wavefield solutions from machine learned functions constrained by the helmholtz equation. Artif Intell Geosci 2:11–19
27.
go back to reference Song C, Alkhalifah T, Waheed UB (2021) Solving the frequency-domain acoustic vti wave equation using physics-informed neural networks. Geophys J Int 225(2):846–859CrossRef Song C, Alkhalifah T, Waheed UB (2021) Solving the frequency-domain acoustic vti wave equation using physics-informed neural networks. Geophys J Int 225(2):846–859CrossRef
28.
go back to reference Morse PM, Ingard KU (1986) Theoretical acoustics. Princeton University Press, New Jersey Morse PM, Ingard KU (1986) Theoretical acoustics. Princeton University Press, New Jersey
29.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Int. Conf. Med. Image Comput. -Assist. Interv., Springer, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Int. Conf. Med. Image Comput. -Assist. Interv., Springer, pp 234–241
30.
go back to reference Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612CrossRef Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612CrossRef
32.
go back to reference Li X, Ning S, Liu Z, Yan Z, Luo C, Zhuang Z (2020) Designing phononic crystal with anticipated band gap through a deep learning based data-driven method. Comput Methods Appl Mech Engrg 361:112737MathSciNetCrossRefMATH Li X, Ning S, Liu Z, Yan Z, Luo C, Zhuang Z (2020) Designing phononic crystal with anticipated band gap through a deep learning based data-driven method. Comput Methods Appl Mech Engrg 361:112737MathSciNetCrossRefMATH
33.
go back to reference Van der Maaten L, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9(11):2579–2605MATH Van der Maaten L, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9(11):2579–2605MATH
Metadata
Title
A Physics-informed and data-driven deep learning approach for wave propagation and its scattering characteristics
Authors
Soo Young Lee
Choon-Su Park
Keonhyeok Park
Hyung Jin Lee
Seungchul Lee
Publication date
09-04-2022
Publisher
Springer London
Published in
Engineering with Computers / Issue 4/2023
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-022-01640-7