Skip to main content
Top

2024 | OriginalPaper | Chapter

A-Posteriori QMC-FEM Error Estimation for Bayesian Inversion and Optimal Control with Entropic Risk Measure

Authors : Marcello Longo, Christoph Schwab, Andreas Stein

Published in: Monte Carlo and Quasi-Monte Carlo Methods

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We propose a novel a-posteriori error estimation technique where the target quantities of interest are ratios of high-dimensional integrals, as occur e.g. in PDE constrained Bayesian inversion and PDE constrained optimal control subject to an entropic risk measure. We consider in particular parametric, elliptic PDEs with affine-parametric diffusion coefficient, on high-dimensional parameter spaces. We combine our recent a-posteriori Quasi-Monte Carlo (QMC) error analysis, with Finite Element a-posteriori error estimation. The proposed approach yields a computable a-posteriori estimator which is reliable, up to higher order terms. The estimator’s reliability is uniform with respect to the PDE discretization, and robust with respect to the parametric dimension of the uncertain PDE input.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
In practice, h either parametrizes the local mesh-size \( \max _{T\in {\mathcal {T}}_h} |T|^{1/2} \), for quasi-uniform collections of partitions, or it relates to the refinement level in case of adaptive refinement [16].
 
Literature
1.
go back to reference Becker, R., Brunner, M., Innerberger, M., Melenk, J.M., Praetorius, D.: Rate-optimal goal-oriented adaptive FEM for semilinear elliptic PDEs. Comput. Math. Appl. 118, 18–35 (2022)MathSciNetCrossRef Becker, R., Brunner, M., Innerberger, M., Melenk, J.M., Praetorius, D.: Rate-optimal goal-oriented adaptive FEM for semilinear elliptic PDEs. Comput. Math. Appl. 118, 18–35 (2022)MathSciNetCrossRef
2.
go back to reference Dick, J., Gantner, R.N., Gia, Q.T.L., Schwab, Ch.: Multilevel higher-order quasi-Monte Carlo Bayesian estimation. Math. Mod. Meth. Appl. Sci. 27(5), 953–995 (2017)MathSciNetCrossRef Dick, J., Gantner, R.N., Gia, Q.T.L., Schwab, Ch.: Multilevel higher-order quasi-Monte Carlo Bayesian estimation. Math. Mod. Meth. Appl. Sci. 27(5), 953–995 (2017)MathSciNetCrossRef
3.
go back to reference Dick, J., Goda, T., Yoshiki, T.: Richardson extrapolation of polynomial lattice rules. SIAM J. Numer. Anal. 57(1), 44–69 (2019)MathSciNetCrossRef Dick, J., Goda, T., Yoshiki, T.: Richardson extrapolation of polynomial lattice rules. SIAM J. Numer. Anal. 57(1), 44–69 (2019)MathSciNetCrossRef
4.
go back to reference Dick, J., Le Gia, Q.T., Schwab, Ch.: Higher order quasi-Monte Carlo integration for holomorphic, parametric operator equations. SIAM/ASA J. Uncertain. Quantif. 4(1), 48–79 (2016)MathSciNetCrossRef Dick, J., Le Gia, Q.T., Schwab, Ch.: Higher order quasi-Monte Carlo integration for holomorphic, parametric operator equations. SIAM/ASA J. Uncertain. Quantif. 4(1), 48–79 (2016)MathSciNetCrossRef
5.
go back to reference Dick, J., Longo, M., Schwab, Ch.: Extrapolated polynomial lattice rule integration in computational uncertainty quantification. SIAM/ASA J. Uncertain. Quantif. 10(2), 651–686 (2022)MathSciNetCrossRef Dick, J., Longo, M., Schwab, Ch.: Extrapolated polynomial lattice rule integration in computational uncertainty quantification. SIAM/ASA J. Uncertain. Quantif. 10(2), 651–686 (2022)MathSciNetCrossRef
6.
go back to reference Ern, A., Guermond, J.-L.: Finite elements I-approximation and interpolation. In: Texts in Applied Mathematics, vol. 72. Springer, Cham (2021) Ern, A., Guermond, J.-L.: Finite elements I-approximation and interpolation. In: Texts in Applied Mathematics, vol. 72. Springer, Cham (2021)
7.
go back to reference Föllmer, H., Knispel, T.: Entropic risk measures: coherence vs. convexity, model ambiguity, and robust large deviations. Stoch. Dyn. 11(2–3):333–351 (2011) Föllmer, H., Knispel, T.: Entropic risk measures: coherence vs. convexity, model ambiguity, and robust large deviations. Stoch. Dyn. 11(2–3):333–351 (2011)
8.
go back to reference Guth, P.A., Kaarnioja, V., Kuo, F.Y., Schillings, C., Sloan, I.H.: A quasi-Monte Carlo method for optimal control under uncertainty. SIAM/ASA J. Uncertain. Quantif. 9(2), 354–383 (2021)MathSciNetCrossRef Guth, P.A., Kaarnioja, V., Kuo, F.Y., Schillings, C., Sloan, I.H.: A quasi-Monte Carlo method for optimal control under uncertainty. SIAM/ASA J. Uncertain. Quantif. 9(2), 354–383 (2021)MathSciNetCrossRef
9.
go back to reference Guth, P.A., Kaarnioja, V., Kuo, F.Y., Schillings, C., Sloan, I.H.: Parabolic PDE-constrained optimal control under uncertainty with entropic risk measure using quasi-Monte Carlo integration. arXiv:2208.02767 (2022) Guth, P.A., Kaarnioja, V., Kuo, F.Y., Schillings, C., Sloan, I.H.: Parabolic PDE-constrained optimal control under uncertainty with entropic risk measure using quasi-Monte Carlo integration. arXiv:​2208.​02767 (2022)
10.
go back to reference Herrmann, L., Keller, M., Schwab, C.: Quasi-Monte Carlo Bayesian estimation under Besov priors in elliptic inverse problems. Math. Comp. 90, 1831–1860 (2021) Herrmann, L., Keller, M., Schwab, C.: Quasi-Monte Carlo Bayesian estimation under Besov priors in elliptic inverse problems. Math. Comp. 90, 1831–1860 (2021)
11.
go back to reference Innerberger, M., Praetorius, D.: MooAFEM: an object oriented Matlab code for higher-order adaptive FEM for (nonlinear) elliptic PDEs. Appl. Math. Comput. 442, Paper No. 127731 (2023) Innerberger, M., Praetorius, D.: MooAFEM: an object oriented Matlab code for higher-order adaptive FEM for (nonlinear) elliptic PDEs. Appl. Math. Comput. 442, Paper No. 127731 (2023)
12.
go back to reference Kouri, D.P., Surowiec, T.M.: Existence and optimality conditions for risk-averse PDE-constrained optimization. SIAM/ASA J. Uncertain. Quantif. 6(2), 787–815 (2018)MathSciNetCrossRef Kouri, D.P., Surowiec, T.M.: Existence and optimality conditions for risk-averse PDE-constrained optimization. SIAM/ASA J. Uncertain. Quantif. 6(2), 787–815 (2018)MathSciNetCrossRef
13.
go back to reference Longo, M.: Adaptive quasi-Monte Carlo finite element methods for parametric elliptic PDEs. J. Sci. Comput. 92(1) (2022) Longo, M.: Adaptive quasi-Monte Carlo finite element methods for parametric elliptic PDEs. J. Sci. Comput. 92(1) (2022)
14.
go back to reference Longo, M.: Extrapolated Polynomial Lattices and Adaptivity in Computational Uncertainty Quantification. Ph.D. thesis, ETH Zürich (2022) Longo, M.: Extrapolated Polynomial Lattices and Adaptivity in Computational Uncertainty Quantification. Ph.D. thesis, ETH Zürich (2022)
15.
go back to reference Niederreiter, H.: Low-discrepancy point sets obtained by digital constructions over finite fields. Czechoslovak Math. J. 42(117)(1), 143–166 (1992) Niederreiter, H.: Low-discrepancy point sets obtained by digital constructions over finite fields. Czechoslovak Math. J. 42(117)(1), 143–166 (1992)
16.
go back to reference Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: Multiscale, Nonlinear and Adaptive Approximation, pp. 409–542. Springer, Berlin (2009) Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: Multiscale, Nonlinear and Adaptive Approximation, pp. 409–542. Springer, Berlin (2009)
17.
go back to reference Scheichl, R., Stuart, A.M., Teckentrup, A.L.: Quasi-Monte Carlo and multilevel Monte Carlo methods for computing posterior expectations in elliptic inverse problems. SIAM/ASA J. Uncertain. Quantif. 5(1), 493–518 (2017)MathSciNetCrossRef Scheichl, R., Stuart, A.M., Teckentrup, A.L.: Quasi-Monte Carlo and multilevel Monte Carlo methods for computing posterior expectations in elliptic inverse problems. SIAM/ASA J. Uncertain. Quantif. 5(1), 493–518 (2017)MathSciNetCrossRef
18.
go back to reference Schillings, C., Schwab, Ch.: Sparsity in Bayesian inversion of parametric operator equations. Invers. Probl. 30(6), 065007 (2014) Schillings, C., Schwab, Ch.: Sparsity in Bayesian inversion of parametric operator equations. Invers. Probl. 30(6), 065007 (2014)
19.
go back to reference Schillings, C., Schwab, Ch.: Scaling limits in computational Bayesian inversion. ESAIM: Math. Modell. Numer. Anal. 50(6), 1825–1856 (2016) Schillings, C., Schwab, Ch.: Scaling limits in computational Bayesian inversion. ESAIM: Math. Modell. Numer. Anal. 50(6), 1825–1856 (2016)
21.
go back to reference Verfürth, R.: A-posteriori error estimation techniques for finite element methods. In: Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013) Verfürth, R.: A-posteriori error estimation techniques for finite element methods. In: Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013)
22.
go back to reference Wihler, T.P.: Weighted \(L^2\)-norm a-posteriori error estimation of FEM in polygons. Int. J. Numer. Anal. Model. 4(1), 100–115 (2007)MathSciNet Wihler, T.P.: Weighted \(L^2\)-norm a-posteriori error estimation of FEM in polygons. Int. J. Numer. Anal. Model. 4(1), 100–115 (2007)MathSciNet
Metadata
Title
A-Posteriori QMC-FEM Error Estimation for Bayesian Inversion and Optimal Control with Entropic Risk Measure
Authors
Marcello Longo
Christoph Schwab
Andreas Stein
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-59762-6_21

Premium Partner