Skip to main content
Top

2022 | OriginalPaper | Chapter

A Pragmatic Study on Movie Recommender Systems Using Hybrid Collaborative Filtering

Authors : Akhil M. Nair, N. Preethi

Published in: IoT and Analytics for Sensor Networks

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Movie Recommendation System (MRS) is part of a comprehensive class of recommendation systems, which categorizes information to predict user preferences. The sum of movies is increasing tremendously day by day, and a reliable recommender system should be developed to increase the user satisfaction. Most of the approaches are made to prevent cold-start, first-rater drawbacks, and gray sheep user problems, nevertheless, in order to recommend the related items, various methods are available in the literature. Firstly, content-based method has some drawbacks like data of similar user could not be achieved, and what category of these items the user likes or dislikes are also not known. Secondly, this paper discusses about collaborative filtering to find both user and item attributes that have been considered. Since there exist some issues pictured with collaborative filtering, so this paper further aims into hybrid collaborative filtering and deep learning with KNN algorithm of ratings of top K-nearest neighbors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sánchez-Moreno, D., Gil González, A., Muñoz Vicente, M., López Batista, V., & Moreno García, M. (2016). A collaborative filtering method for music recommendation using playing coefficients for artists and users. Expert Systems with Applications, 66, 234–244.CrossRef Sánchez-Moreno, D., Gil González, A., Muñoz Vicente, M., López Batista, V., & Moreno García, M. (2016). A collaborative filtering method for music recommendation using playing coefficients for artists and users. Expert Systems with Applications, 66, 234–244.CrossRef
2.
go back to reference Arnold, A. N., & Vairamuthu S. (2019). Music recommendation using collaborative filtering and deep learning. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8(7). ISSN: 2278-3075 Arnold, A. N., & Vairamuthu S. (2019). Music recommendation using collaborative filtering and deep learning. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8(7). ISSN: 2278-3075
3.
go back to reference Suganeshwari, G., & Syed Ibrahim S. P. (2016). A survey on collaborative filtering based recommendation system. In V. Vijayakumar & Neelanarayanan V. (Eds.), Proceedings of the 3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC—16’) (Vol. 49). Smart Innovation, Systems and Technologies. Cham: Springer. Suganeshwari, G., & Syed Ibrahim S. P. (2016). A survey on collaborative filtering based recommendation system. In V. Vijayakumar & Neelanarayanan V. (Eds.), Proceedings of the 3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC—16’) (Vol. 49). Smart Innovation, Systems and Technologies. Cham: Springer.
4.
go back to reference Wei, J., He, J., Chen, K., Zhou, Y., & Tang, Z. (2017). Collaborative filtering and deep learning based recommendation system for cold start items. Expert Systems with Applications, 69, 29–39.CrossRef Wei, J., He, J., Chen, K., Zhou, Y., & Tang, Z. (2017). Collaborative filtering and deep learning based recommendation system for cold start items. Expert Systems with Applications, 69, 29–39.CrossRef
5.
go back to reference Park, Y., Park, S., Jung, W., & Lee, S. (2015). Reversed CF: A fast collaborative filtering algorithm using a k-nearest neighbour graph. Expert Systems with Applications, 42(8), 4022–4028.CrossRef Park, Y., Park, S., Jung, W., & Lee, S. (2015). Reversed CF: A fast collaborative filtering algorithm using a k-nearest neighbour graph. Expert Systems with Applications, 42(8), 4022–4028.CrossRef
6.
go back to reference Sunitha, M., & Adilakshmi, T. (2018). Music recommendation system with user-based and item-based collaborative filtering technique. In G. Perez, K. Mishra, S. Tiwari, & M. Trivedi (Eds.), Networking Communication and Data Knowledge Engineering (Vol. 3). Lecture Notes on Data Engineering and Communications Technologies. Singapore: Springer. Sunitha, M., & Adilakshmi, T. (2018). Music recommendation system with user-based and item-based collaborative filtering technique. In G. Perez, K. Mishra, S. Tiwari, & M. Trivedi (Eds.), Networking Communication and Data Knowledge Engineering (Vol. 3). Lecture Notes on Data Engineering and Communications Technologies. Singapore: Springer.
7.
go back to reference Segaran, T. (2007). Programming collective intelligence: Building smart web 2.0 applications. O'Reilly Media. Segaran, T. (2007). Programming collective intelligence: Building smart web 2.0 applications. O'Reilly Media.
8.
go back to reference Herrada, O. C. (2009). Music recommendation and discovery in the long tail. Ph.D. thesis, Universitat Pompeu Fabra. Herrada, O. C. (2009). Music recommendation and discovery in the long tail. Ph.D. thesis, Universitat Pompeu Fabra.
9.
go back to reference Burke, R. (2007). Hybrid web recommender systems. The Adaptive Web (pp. 377–408). Springer. Burke, R. (2007). Hybrid web recommender systems. The Adaptive Web (pp. 377–408). Springer.
Metadata
Title
A Pragmatic Study on Movie Recommender Systems Using Hybrid Collaborative Filtering
Authors
Akhil M. Nair
N. Preethi
Copyright Year
2022
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-2919-8_44