Skip to main content
Top

2018 | OriginalPaper | Chapter

6. A Prediction of Aerodynamics of Arbitrary Shape Non-fragmenting Space Debris During Decay Without Ablation

Authors : Sayavur I. Bakhtiyarov, Ramiz S. Gurbanov, Eldar T. Abdinov, Nadir Yilmaz

Published in: Advances in Sustainable Aviation

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Along with many technological and economic benefits brought by the space exploration to the humankind, there were damaging impacts of these achievements to the space environment. As a result of the activities in space, an enormous amount of uncontrolled space objects have been left in Earth’s orbit which poses a serious endangerment to the sustainability of outer space. The objective of this research was to develop an engineering method to predict an aerodynamics of arbitrary shape non-fragmenting space debris without ablation. Using a complex variable method (“linearization of single-bonded area”), a universal formula for velocity of arbitrary shape fragments was derived. This technique allows describing the space fragments (debris) of various shapes, sizes, and masses.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Leibenzon, L. S. (1953). Collected works (Vol. 3, p. 680). Moscow: Academy of Sciences of USSR Publishers. (in Russian). Leibenzon, L. S. (1953). Collected works (Vol. 3, p. 680). Moscow: Academy of Sciences of USSR Publishers. (in Russian).
2.
go back to reference Leibenzon, L. S. (1947). Flow of natural fluids and gases in porous medium (p. 244). Moscow: Gostekhizdat. (in Russian). Leibenzon, L. S. (1947). Flow of natural fluids and gases in porous medium (p. 244). Moscow: Gostekhizdat. (in Russian).
3.
go back to reference Loitsyansky, L. G. (1973). Mechanics of fluids and gases (p. 848). Moscow: Nauka. Loitsyansky, L. G. (1973). Mechanics of fluids and gases (p. 848). Moscow: Nauka.
4.
go back to reference Mirzadjanzade, A. K. (1959). Hydrodynamics of viscoplastic and viscous fluids in oil production applications (p. 409). Baku: Azerneftneshr. (in Russian). Mirzadjanzade, A. K. (1959). Hydrodynamics of viscoplastic and viscous fluids in oil production applications (p. 409). Baku: Azerneftneshr. (in Russian).
5.
go back to reference Lavtentyev, M. A., & Shabat, B. V. (1973). Methods of complex variable functions theory (p. 736). Moscow: Nauka. (in Russian). Lavtentyev, M. A., & Shabat, B. V. (1973). Methods of complex variable functions theory (p. 736). Moscow: Nauka. (in Russian).
6.
go back to reference Gurbanov, R. S., & Abdinov, E. T. (1987). A study of laminar flow in pipes and channels of arbitrary cross sections using a complex variable functions theory. DAN Az SSR, 43(3), 37–42.MATH Gurbanov, R. S., & Abdinov, E. T. (1987). A study of laminar flow in pipes and channels of arbitrary cross sections using a complex variable functions theory. DAN Az SSR, 43(3), 37–42.MATH
7.
go back to reference Polya, G., & Szego, G. (1962). Izoperimetric inequalities in mathematical physics (p. 336). Moscow: Springer. (in Russian). Polya, G., & Szego, G. (1962). Izoperimetric inequalities in mathematical physics (p. 336). Moscow: Springer. (in Russian).
8.
go back to reference Dvoyeglazov, B. F., & Vachagin, K. D. (1974). Experimental study of dispersion systems flow in non-circular channels. Proceedings of Kazan Institute of Chemical Engineering, 53, 138–141. Dvoyeglazov, B. F., & Vachagin, K. D. (1974). Experimental study of dispersion systems flow in non-circular channels. Proceedings of Kazan Institute of Chemical Engineering, 53, 138–141.
9.
go back to reference Adler, Y. P., Markov, E. V., & Granovski, Y. V. (1971). Design and optimization of experiments (p. 284). Moscow: Nauka. (in Russian). Adler, Y. P., Markov, E. V., & Granovski, Y. V. (1971). Design and optimization of experiments (p. 284). Moscow: Nauka. (in Russian).
10.
go back to reference Schiller, L. (1936). Fluids flow in pipes (p. 230). Moscow: ONTI-NKTp. (in Russian). Schiller, L. (1936). Fluids flow in pipes (p. 230). Moscow: ONTI-NKTp. (in Russian).
11.
go back to reference Küchemann, D. (2012). The aerodynamic design of aircraft, AIAA Education Series. Reston: American Institute of Aeronautics & Astronautics.CrossRef Küchemann, D. (2012). The aerodynamic design of aircraft, AIAA Education Series. Reston: American Institute of Aeronautics & Astronautics.CrossRef
Metadata
Title
A Prediction of Aerodynamics of Arbitrary Shape Non-fragmenting Space Debris During Decay Without Ablation
Authors
Sayavur I. Bakhtiyarov
Ramiz S. Gurbanov
Eldar T. Abdinov
Nadir Yilmaz
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-67134-5_6

Premium Partner