Skip to main content
Top
Published in: Numerical Algorithms 1/2020

08-06-2019 | Original Paper

A priori error estimates of a Jacobi spectral method for nonlinear systems of fractional boundary value problems and related Volterra-Fredholm integral equations with smooth solutions

Authors: Mahmoud A. Zaky, Ibrahem G. Ameen

Published in: Numerical Algorithms | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Our aim in this paper is to develop a Legendre-Jacobi collocation approach for a nonlinear system of two-point boundary value problems with derivative orders at most two on the interval (0,T). The scheme is constructed based on the reduction of the system considered to its equivalent system of Volterra-Fredholm integral equations. The spectral rate of convergence for the proposed method is established in both L2- and \( L^{\infty } \)- norms. The resulting spectral method is capable of achieving spectral accuracy for problems with smooth solutions and a reasonable order of convergence for non-smooth solutions. Moreover, the scheme is easy to implement numerically. The applicability of the method is demonstrated on a variety of problems of varying complexity. To the best of our knowledge, the spectral solution of such a nonlinear system of fractional differential equations and its associated nonlinear system of Volterra-Fredholm integral equations has not yet been studied in literature in detail. This gap in the literature is filled by the present paper.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Zaky, M.A.: Recovery of high order accuracy in Jacobi spectral collocation methods for fractional terminal value problems with non-smooth solutions. J. Comput. Appl. Math. 357, 103–122 (2019)MathSciNetMATH Zaky, M.A.: Recovery of high order accuracy in Jacobi spectral collocation methods for fractional terminal value problems with non-smooth solutions. J. Comput. Appl. Math. 357, 103–122 (2019)MathSciNetMATH
2.
go back to reference Stynes, M., Gracia, J.L.: A finite difference method for a two-point boundary value problem with a Caputo fractional derivative. IMA J. Numer. Anal. 35(2), 698–721 (2015)MathSciNetMATH Stynes, M., Gracia, J.L.: A finite difference method for a two-point boundary value problem with a Caputo fractional derivative. IMA J. Numer. Anal. 35(2), 698–721 (2015)MathSciNetMATH
3.
go back to reference Pedas, A., Tamme, E., Vikerpuur, M.: Smoothing transformation and spline collocation for nonlinear fractional initial and boundary value problems. J. Comput. Appl. Math. 317, 1–16 (2017)MathSciNetMATH Pedas, A., Tamme, E., Vikerpuur, M.: Smoothing transformation and spline collocation for nonlinear fractional initial and boundary value problems. J. Comput. Appl. Math. 317, 1–16 (2017)MathSciNetMATH
4.
go back to reference Gracia, J.L., Stynes, M.: Central difference approximation of convection in Caputo fractional derivative two-point boundary value problems. J. Comput. Appl. Math. 273, 103–115 (2015)MathSciNetMATH Gracia, J.L., Stynes, M.: Central difference approximation of convection in Caputo fractional derivative two-point boundary value problems. J. Comput. Appl. Math. 273, 103–115 (2015)MathSciNetMATH
5.
go back to reference Cen, Z., Huang, J., Xu, A.: An efficient numerical method for a two-point boundary value problem with a Caputo fractional derivative. J. Comput. Appl. Math. 336, 1–7 (2018)MathSciNetMATH Cen, Z., Huang, J., Xu, A.: An efficient numerical method for a two-point boundary value problem with a Caputo fractional derivative. J. Comput. Appl. Math. 336, 1–7 (2018)MathSciNetMATH
6.
go back to reference Podlubny, I.: Fractional Differential Equations, Mathematics in Science and Engineering, vol. 198 Academic Press (1999) Podlubny, I.: Fractional Differential Equations, Mathematics in Science and Engineering, vol. 198 Academic Press (1999)
7.
go back to reference Zaky, M.A.: An improved tau method for the multi-dimensional fractional Rayleigh–Stokes problem for a heated generalized second grade fluid. Comput. Math. Appl. 75, 2243–2258 (2018)MathSciNetMATH Zaky, M.A.: An improved tau method for the multi-dimensional fractional Rayleigh–Stokes problem for a heated generalized second grade fluid. Comput. Math. Appl. 75, 2243–2258 (2018)MathSciNetMATH
8.
go back to reference Mokhtary, P.: Numerical treatment of a well-posed Chebyshev tau method for Bagley-Torvik equation with high-order of accuracy. Numer. Algor. 72(4), 875–891 (2016)MathSciNetMATH Mokhtary, P.: Numerical treatment of a well-posed Chebyshev tau method for Bagley-Torvik equation with high-order of accuracy. Numer. Algor. 72(4), 875–891 (2016)MathSciNetMATH
9.
go back to reference Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-eldein, S.S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. 293, 142–156 (2015)MathSciNetMATH Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-eldein, S.S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. 293, 142–156 (2015)MathSciNetMATH
10.
go back to reference Doha, E.H., Zaky, M.A., Abdelkawy, M.: Spectral Methods Within Fractional Calculus, Handbook of Fractional Calculus with Applications, vol. 8 Part B, pp 207–232. De Gruyter, Berlin (2019) Doha, E.H., Zaky, M.A., Abdelkawy, M.: Spectral Methods Within Fractional Calculus, Handbook of Fractional Calculus with Applications, vol. 8 Part B, pp 207–232. De Gruyter, Berlin (2019)
11.
go back to reference Mokhtary, P.: Numerical analysis of an operational Jacobi tau method for fractional weakly singular integro-differential equations. Appl. Numer. Math. 121, 52–67 (2017)MathSciNetMATH Mokhtary, P.: Numerical analysis of an operational Jacobi tau method for fractional weakly singular integro-differential equations. Appl. Numer. Math. 121, 52–67 (2017)MathSciNetMATH
12.
go back to reference Yarmohammadi, M., Javadi, S., Babolian, E.: Spectral iterative method and convergence analysis for solving nonlinear fractional differential equation. J. Comput. Phys. 359, 436–450 (2018)MathSciNetMATH Yarmohammadi, M., Javadi, S., Babolian, E.: Spectral iterative method and convergence analysis for solving nonlinear fractional differential equation. J. Comput. Phys. 359, 436–450 (2018)MathSciNetMATH
13.
go back to reference Wei, Y., Chen, Y.: A Jacobi spectral method for solving multidimensional linear Volterra integral equation of the second kind. J. Sci. Comput. 79(3), 1801–1813 (2019)MathSciNetMATH Wei, Y., Chen, Y.: A Jacobi spectral method for solving multidimensional linear Volterra integral equation of the second kind. J. Sci. Comput. 79(3), 1801–1813 (2019)MathSciNetMATH
14.
go back to reference Ezz-Eldien, S.S.: On solving systems of multi-pantograph equations via spectral tau method. Appl. Math. Comput. 321, 63–73 (2018)MathSciNetMATH Ezz-Eldien, S.S.: On solving systems of multi-pantograph equations via spectral tau method. Appl. Math. Comput. 321, 63–73 (2018)MathSciNetMATH
15.
go back to reference Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)MathSciNetMATH Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)MathSciNetMATH
16.
go back to reference Bhrawy, A.H., Zaky, M.A.: Shifted fractional-order Jacobi orthogonal functions: application to a system of fractional differential equations. Appl. Math. Model. 40, 832–845 (2016)MathSciNetMATH Bhrawy, A.H., Zaky, M.A.: Shifted fractional-order Jacobi orthogonal functions: application to a system of fractional differential equations. Appl. Math. Model. 40, 832–845 (2016)MathSciNetMATH
17.
go back to reference Pezza, L., Pitolli, F.: A multiscale collocation method for fractional differential problems. Math. Comput. Simul. 147, 210–219 (2018)MathSciNetMATH Pezza, L., Pitolli, F.: A multiscale collocation method for fractional differential problems. Math. Comput. Simul. 147, 210–219 (2018)MathSciNetMATH
18.
go back to reference Ghanbari, F., Ghanbari, K., Mokhtary, P.: Generalized Jacobi–Galerkin method for nonlinear fractional differential algebraic equations. Comp. Appl. Math. 37, 5456–5475 (2018)MathSciNetMATH Ghanbari, F., Ghanbari, K., Mokhtary, P.: Generalized Jacobi–Galerkin method for nonlinear fractional differential algebraic equations. Comp. Appl. Math. 37, 5456–5475 (2018)MathSciNetMATH
19.
go back to reference Dabiri, A., Butcher, E.A.: Numerical solution of multi-order fractional differential equations with multiple delays via spectral collocation methods. Appl. Math. Model. 56, 424–448 (2018)MathSciNetMATH Dabiri, A., Butcher, E.A.: Numerical solution of multi-order fractional differential equations with multiple delays via spectral collocation methods. Appl. Math. Model. 56, 424–448 (2018)MathSciNetMATH
20.
go back to reference Mokhtary, P., Ghoreishi, F., Srivastava, H.M.: The Müntz-Legendre Tau method for fractional differential equations. Appl. Math. Model. 40(2), 671–684 (2016)MathSciNetMATH Mokhtary, P., Ghoreishi, F., Srivastava, H.M.: The Müntz-Legendre Tau method for fractional differential equations. Appl. Math. Model. 40(2), 671–684 (2016)MathSciNetMATH
21.
go back to reference Kopteva, N., Stynes, M.: An efficient collocation method for a Caputo two-point boundary value problem. BIT Numer. Math. 55, 1105–1123 (2015)MathSciNetMATH Kopteva, N., Stynes, M.: An efficient collocation method for a Caputo two-point boundary value problem. BIT Numer. Math. 55, 1105–1123 (2015)MathSciNetMATH
22.
go back to reference Pedas, A., Tamme, E.: Piecewise polynomial collocation for linear boundary value problems of fractional differential equations. J. Comput. Appl. Math. 236, 3349–3359 (2012)MathSciNetMATH Pedas, A., Tamme, E.: Piecewise polynomial collocation for linear boundary value problems of fractional differential equations. J. Comput. Appl. Math. 236, 3349–3359 (2012)MathSciNetMATH
23.
go back to reference Sheng, C., Shen, J.: A hybrid spectral element method for fractional two-point boundary value problems. Numer. Math. Theory Methods Appl. 10(2), 437–464 (2017)MathSciNetMATH Sheng, C., Shen, J.: A hybrid spectral element method for fractional two-point boundary value problems. Numer. Math. Theory Methods Appl. 10(2), 437–464 (2017)MathSciNetMATH
24.
go back to reference Wang, J., Xu, T.-Z., Wei, Y.-Q., Xie, J.-Q.: Numerical simulation for coupled systems of nonlinear fractional order integro-differential equations via wavelets method. Appl. Math. Comput. 324, 36–50 (2018)MathSciNetMATH Wang, J., Xu, T.-Z., Wei, Y.-Q., Xie, J.-Q.: Numerical simulation for coupled systems of nonlinear fractional order integro-differential equations via wavelets method. Appl. Math. Comput. 324, 36–50 (2018)MathSciNetMATH
25.
go back to reference Wang, C., Wang, Z., Wang, L.: A spectral collocation method for nonlinear fractional boundary value problems with a Caputo derivative. J. Sci. Comput. 76(1), 166–188 (2018)MathSciNetMATH Wang, C., Wang, Z., Wang, L.: A spectral collocation method for nonlinear fractional boundary value problems with a Caputo derivative. J. Sci. Comput. 76(1), 166–188 (2018)MathSciNetMATH
26.
go back to reference Gu, Z.: Piecewise spectral collocation method for system of Volterra integral equations. Adv. Comput. Math. 43, 385–409 (2017)MathSciNetMATH Gu, Z.: Piecewise spectral collocation method for system of Volterra integral equations. Adv. Comput. Math. 43, 385–409 (2017)MathSciNetMATH
27.
go back to reference Graef, J.R., Kong, L., Wang, M.: A Chebyshev spectral method for solving Riemann–Liouville fractional boundary value problems. Appl. Math. Comput. 241, 140–150 (2014)MathSciNetMATH Graef, J.R., Kong, L., Wang, M.: A Chebyshev spectral method for solving Riemann–Liouville fractional boundary value problems. Appl. Math. Comput. 241, 140–150 (2014)MathSciNetMATH
28.
go back to reference Li, C., Zeng, F., Liu, F.: Spectral approximations to the fractional integral and derivative. Frac. Cal. Appl. Anal. 15.3, 383–406 (2012)MathSciNetMATH Li, C., Zeng, F., Liu, F.: Spectral approximations to the fractional integral and derivative. Frac. Cal. Appl. Anal. 15.3, 383–406 (2012)MathSciNetMATH
29.
go back to reference Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 62(5), 2364–2373 (2011)MathSciNetMATH Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 62(5), 2364–2373 (2011)MathSciNetMATH
30.
go back to reference Ezz-Eldien, S.S., Doha, E.H.: Fast and precise spectral method for solving pantograph type Volterra integro-differential equations. Numer. Algor. 81(1), 57–77 (2019)MathSciNetMATH Ezz-Eldien, S.S., Doha, E.H.: Fast and precise spectral method for solving pantograph type Volterra integro-differential equations. Numer. Algor. 81(1), 57–77 (2019)MathSciNetMATH
31.
go back to reference Doha, E.H., Abdelkawy, M.A., Amin, A.Z.M., Lopes, A.M.: Shifted Jacobi–Gauss-collocation with convergence analysis for fractional integro-differential equations. Commun. Nonlinear Sci. Numer. Simulat. 72, 342–359 (2019)MathSciNet Doha, E.H., Abdelkawy, M.A., Amin, A.Z.M., Lopes, A.M.: Shifted Jacobi–Gauss-collocation with convergence analysis for fractional integro-differential equations. Commun. Nonlinear Sci. Numer. Simulat. 72, 342–359 (2019)MathSciNet
34.
go back to reference Bai, Z., Lü, H.: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495–505 (2005)MathSciNetMATH Bai, Z., Lü, H.: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495–505 (2005)MathSciNetMATH
35.
go back to reference Su, X.: Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 22, 64–69 (2009)MathSciNetMATH Su, X.: Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 22, 64–69 (2009)MathSciNetMATH
36.
go back to reference Zhao, Y., Sun, S., Han, Z., Li, Q.: The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations. Commun. Nonlinear Sci. Numer. Simulat. 16, 2086–2097 (2011)MathSciNetMATH Zhao, Y., Sun, S., Han, Z., Li, Q.: The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations. Commun. Nonlinear Sci. Numer. Simulat. 16, 2086–2097 (2011)MathSciNetMATH
37.
go back to reference Xu, X., Jiang, D., Yuan, C.: Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation. Nonlinear Anal. 71(10), 4676–4688 (2009)MathSciNetMATH Xu, X., Jiang, D., Yuan, C.: Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation. Nonlinear Anal. 71(10), 4676–4688 (2009)MathSciNetMATH
38.
go back to reference Goodrich, C.: Existence of a positive solution to systems of differential equations of fractional order. Comput. Math. Appl. 62, 1251–1268 (2011)MathSciNetMATH Goodrich, C.: Existence of a positive solution to systems of differential equations of fractional order. Comput. Math. Appl. 62, 1251–1268 (2011)MathSciNetMATH
39.
go back to reference Rehman, M., Khan, R.A.: A note on boundary value problems for a coupled system of fractional differential equations. Comput. Math. Appl. 62, 1251–1268 (2011)MathSciNet Rehman, M., Khan, R.A.: A note on boundary value problems for a coupled system of fractional differential equations. Comput. Math. Appl. 62, 1251–1268 (2011)MathSciNet
40.
go back to reference Ouyang, Z., Chen, Y., Zou, S.: Existence of positive solutions to a boundary value problem for a delayed nonlinear fractional differential system. Bound. Value Probl. 2011(1), 475126 (2011)MathSciNetMATH Ouyang, Z., Chen, Y., Zou, S.: Existence of positive solutions to a boundary value problem for a delayed nonlinear fractional differential system. Bound. Value Probl. 2011(1), 475126 (2011)MathSciNetMATH
41.
go back to reference Szegö, G.: Orthogonal Polynomials, 4th edn. AMS Coll Publ. (1975) Szegö, G.: Orthogonal Polynomials, 4th edn. AMS Coll Publ. (1975)
42.
go back to reference Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)MATH Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)MATH
43.
go back to reference Shen, J., Tang, T., Wang, L.: Spectral Method Algorithms, Analysis and Applications. Springer, Berlin (2011)MATH Shen, J., Tang, T., Wang, L.: Spectral Method Algorithms, Analysis and Applications. Springer, Berlin (2011)MATH
44.
go back to reference Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)MATH Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)MATH
45.
go back to reference Mastroianni, G., Occorsto, D.: Optimal systems of nodes for Lagrange interpolation on bounded intervals: a survey. J. Comput. Appl. Math. 134, 325–341 (2001)MathSciNetMATH Mastroianni, G., Occorsto, D.: Optimal systems of nodes for Lagrange interpolation on bounded intervals: a survey. J. Comput. Appl. Math. 134, 325–341 (2001)MathSciNetMATH
Metadata
Title
A priori error estimates of a Jacobi spectral method for nonlinear systems of fractional boundary value problems and related Volterra-Fredholm integral equations with smooth solutions
Authors
Mahmoud A. Zaky
Ibrahem G. Ameen
Publication date
08-06-2019
Publisher
Springer US
Published in
Numerical Algorithms / Issue 1/2020
Print ISSN: 1017-1398
Electronic ISSN: 1572-9265
DOI
https://doi.org/10.1007/s11075-019-00743-5

Other articles of this Issue 1/2020

Numerical Algorithms 1/2020 Go to the issue

Premium Partner