Skip to main content
Top
Published in: Mechanics of Composite Materials 2/2020

20-05-2020

A Progressive FE Failure Model for Laminates under Biaxial Loading

Authors: H. Zhu, Z. X. Guo, M. Zhu, J. J. Cui, Q. He, Y. C. Li

Published in: Mechanics of Composite Materials | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A finite-element (FE) model simulating the elastic behavior of anisotropic glass/epoxy composite laminates subjected to a biaxial tensile loading is proposed. A progressive failure prediction and analysis are performed in the ABAQUS FE code by using user-defined constitutive equations. A numerical analysis is performed for different loading ratios and ply angles. Gradual failure patterns of fiber and matrix are presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Russo and B. Zuccarello, “An accurate method to predict the stress concentration in composite laminates with a circular hole under tensile loading,” Mech. Compos. Mater., 43, No. 4, 359-376 (2007).CrossRef A. Russo and B. Zuccarello, “An accurate method to predict the stress concentration in composite laminates with a circular hole under tensile loading,” Mech. Compos. Mater., 43, No. 4, 359-376 (2007).CrossRef
2.
go back to reference Z. X. Guo, H. Zhu, Y. C. Li, X. P. Han, and Z.H. Wang, “Simulating initial and progressive failure of open-hole composite laminates under tension,” Appl. Compos. Mater., 23, 1209-1218 (2016).CrossRef Z. X. Guo, H. Zhu, Y. C. Li, X. P. Han, and Z.H. Wang, “Simulating initial and progressive failure of open-hole composite laminates under tension,” Appl. Compos. Mater., 23, 1209-1218 (2016).CrossRef
3.
go back to reference P. D. Soden, A. S. Kaddour, and M. J. Hinton, “Recommendations for designers and researchers resulting from the world-wide failure exercise,” Compos. Sci. Technol., 64, 589-604 (2004).CrossRef P. D. Soden, A. S. Kaddour, and M. J. Hinton, “Recommendations for designers and researchers resulting from the world-wide failure exercise,” Compos. Sci. Technol., 64, 589-604 (2004).CrossRef
4.
go back to reference M. U. Saeed, Z. F. Chen, Z. H. Chen, and B. B. Li, “Comparison of fracture characteristics of open-hole-notch carbonfiber-reinforced composites subjected to tensile and compressive loadings,” Mech. Compos. Mater., 52, No. 6, 751-758 (2017).CrossRef M. U. Saeed, Z. F. Chen, Z. H. Chen, and B. B. Li, “Comparison of fracture characteristics of open-hole-notch carbonfiber-reinforced composites subjected to tensile and compressive loadings,” Mech. Compos. Mater., 52, No. 6, 751-758 (2017).CrossRef
5.
go back to reference P. A. Zinov’Ev and S. V. Tsvetkov, “Plastic instability of a cylindrical angle-ply shell in biaxial tension,” Mech. Compos. Mater., 30, No. 5, 474-483 (1995).CrossRef P. A. Zinov’Ev and S. V. Tsvetkov, “Plastic instability of a cylindrical angle-ply shell in biaxial tension,” Mech. Compos. Mater., 30, No. 5, 474-483 (1995).CrossRef
6.
go back to reference C. S. Lee, W. Hwang, H. C. Park, and K. S. Han, “Static strength and failure mechanism of CFRP under biaxial loadings,” Mech. Compos. Mater., 34, No. 1, 28-42 (1998).CrossRef C. S. Lee, W. Hwang, H. C. Park, and K. S. Han, “Static strength and failure mechanism of CFRP under biaxial loadings,” Mech. Compos. Mater., 34, No. 1, 28-42 (1998).CrossRef
7.
go back to reference A. Smits, D. Van Hemelrijck, T. P. Philippidis, and A. Cardon, “Design of a cruciform specimen for biaxial testing of fiber reinforced composite laminates,” Compos. Sci. Technol. 66, 964-975 (2006).CrossRef A. Smits, D. Van Hemelrijck, T. P. Philippidis, and A. Cardon, “Design of a cruciform specimen for biaxial testing of fiber reinforced composite laminates,” Compos. Sci. Technol. 66, 964-975 (2006).CrossRef
8.
go back to reference V. Strizhius, “Estimation of the residual fatigue life of laminated composites under a multistage cyclic loading,” Mech. Compos. Mater., 52, No. 5, 611-622 (2016).CrossRef V. Strizhius, “Estimation of the residual fatigue life of laminated composites under a multistage cyclic loading,” Mech. Compos. Mater., 52, No. 5, 611-622 (2016).CrossRef
9.
go back to reference L. Leotoing, D. Guines, I. Zidane, and E. Ragneau, “Cruciform shape benefits for experimental and numerical evaluation of sheet metal formability,” J. Mater. Process. Tech., 213, 856–863 (2013).CrossRef L. Leotoing, D. Guines, I. Zidane, and E. Ragneau, “Cruciform shape benefits for experimental and numerical evaluation of sheet metal formability,” J. Mater. Process. Tech., 213, 856–863 (2013).CrossRef
10.
go back to reference R. Baptista, R.A.Claudio, L. Reis, J.F.A. Madeira, I. Guelho, and M.Freitas, “Optimization of cruciform specimens for biaxial fatigue loading with direct multi search,” Theor. Appl. Fract. Mech., 80, 65-72 (2015).CrossRef R. Baptista, R.A.Claudio, L. Reis, J.F.A. Madeira, I. Guelho, and M.Freitas, “Optimization of cruciform specimens for biaxial fatigue loading with direct multi search,” Theor. Appl. Fract. Mech., 80, 65-72 (2015).CrossRef
11.
go back to reference M. C. Serna Moreno and J.J López Cela, “Failure envelope under biaxial tensile loading for chopped glass-reinforced polyester composites,” Compos. Sci. Technol., 72, 91-96 (2011). M. C. Serna Moreno and J.J López Cela, “Failure envelope under biaxial tensile loading for chopped glass-reinforced polyester composites,” Compos. Sci. Technol., 72, 91-96 (2011).
12.
go back to reference M. D. Muhamad Irwan, M. A. Zurri Adam, and J. Mahmud, “Failure analysis of composite laminates under biaxial tension: A review and framework,” Appl. Mech. Mater., 680, No. 6, 160-163 (2016). M. D. Muhamad Irwan, M. A. Zurri Adam, and J. Mahmud, “Failure analysis of composite laminates under biaxial tension: A review and framework,” Appl. Mech. Mater., 680, No. 6, 160-163 (2016).
13.
go back to reference J. S. Welsh, J. S. Mayes, and A. C. Biskner, “2-D biaxial testing and failure predictions of IM7/977-2 carbon/epoxy quasi-isotropic laminates,” Compos. Struct., 75, 60-66 (2006).CrossRef J. S. Welsh, J. S. Mayes, and A. C. Biskner, “2-D biaxial testing and failure predictions of IM7/977-2 carbon/epoxy quasi-isotropic laminates,” Compos. Struct., 75, 60-66 (2006).CrossRef
14.
go back to reference A. E. Antoniou, D. Van Hemelrijck, and T. P. Philippidis, “Failure prediction for a glass/epoxy cruciform specimen under static biaxial loading,” Compos. Sci. Technol., 70, 1232-1241 (2010).CrossRef A. E. Antoniou, D. Van Hemelrijck, and T. P. Philippidis, “Failure prediction for a glass/epoxy cruciform specimen under static biaxial loading,” Compos. Sci. Technol., 70, 1232-1241 (2010).CrossRef
15.
go back to reference C. Xu, L. Song, H. Zhu, S. Meng, W. Xie, and H. Jin, “Experimental investigation on the mechanical behaviour of 3D carbon/carbon composites under biaxial compression,” Compos. Struct., 188, 7-14 (2018).CrossRef C. Xu, L. Song, H. Zhu, S. Meng, W. Xie, and H. Jin, “Experimental investigation on the mechanical behaviour of 3D carbon/carbon composites under biaxial compression,” Compos. Struct., 188, 7-14 (2018).CrossRef
16.
go back to reference A. Rashedi, I. Sridhar, and K. J. Tseng, “Fracture characterization of glass fiber composite laminate under experimental biaxial loading,” Compos. Struct., 138, 17-29 (2015).CrossRef A. Rashedi, I. Sridhar, and K. J. Tseng, “Fracture characterization of glass fiber composite laminate under experimental biaxial loading,” Compos. Struct., 138, 17-29 (2015).CrossRef
17.
go back to reference J. Navarro-Zafra, J.L. Curiel-Sosa, and C. S. Cerna Moreno, “Mixed-mode damage into a CGRP cruciform subjected to biaxial loading,” Compos. Struct., 133, 1093-1100 (2015).CrossRef J. Navarro-Zafra, J.L. Curiel-Sosa, and C. S. Cerna Moreno, “Mixed-mode damage into a CGRP cruciform subjected to biaxial loading,” Compos. Struct., 133, 1093-1100 (2015).CrossRef
18.
go back to reference D. Cai, J. Tang, G. Zhou, X. Wang, C. Li, and V. V. Silberschmidt, “Failure analysis of plain woven glass/epoxy laminates: Comparison of off-axis and biaxial tension loadings,” Polym. Test., 60, 307-320 (2017).CrossRef D. Cai, J. Tang, G. Zhou, X. Wang, C. Li, and V. V. Silberschmidt, “Failure analysis of plain woven glass/epoxy laminates: Comparison of off-axis and biaxial tension loadings,” Polym. Test., 60, 307-320 (2017).CrossRef
19.
go back to reference Y. Ismail, D. Yang, and J. Ye, “A DEM model for visualising damage evolution and predicting failure envelope of composite laminate under biaxial loads,” Compos. Part B-Eng, 102, 9-28 (2016).CrossRef Y. Ismail, D. Yang, and J. Ye, “A DEM model for visualising damage evolution and predicting failure envelope of composite laminate under biaxial loads,” Compos. Part B-Eng, 102, 9-28 (2016).CrossRef
20.
go back to reference Z. Hashin and A. Rotem, “A fatigue failure criterion for fiber reinforced materials,” J. Compos. Mater., 7, 448-464 (1973).CrossRef Z. Hashin and A. Rotem, “A fatigue failure criterion for fiber reinforced materials,” J. Compos. Mater., 7, 448-464 (1973).CrossRef
21.
go back to reference A. Puck and H. Schürmann, “Failure analysis of FRP laminates by means of physically based phenomenological models,” Compos. Sci. Technol., 58, 1045-1067 (1998).CrossRef A. Puck and H. Schürmann, “Failure analysis of FRP laminates by means of physically based phenomenological models,” Compos. Sci. Technol., 58, 1045-1067 (1998).CrossRef
22.
go back to reference L Távara, V. Mantič, E. Graciani, and F. París, “Modelling interfacial debonds in unidirectional fiber-reinforced composites under biaxial transverse loads,” Compos. Struct., 136, 305-312 (2015). L Távara, V. Mantič, E. Graciani, and F. París, “Modelling interfacial debonds in unidirectional fiber-reinforced composites under biaxial transverse loads,” Compos. Struct., 136, 305-312 (2015).
23.
go back to reference J. Montesano and C. V. Singh, “Predicting evolution of ply cracks in composite laminates subjected to biaxial loading,” Compos. Part B-Eng., 75, 264-273 (2015).CrossRef J. Montesano and C. V. Singh, “Predicting evolution of ply cracks in composite laminates subjected to biaxial loading,” Compos. Part B-Eng., 75, 264-273 (2015).CrossRef
24.
go back to reference H. T. Hu, W. P. Lin, and F. T. Tu, “Failure analysis of fiber-reinforced composite laminates subjected to biaxial loads,” Compos. Part B-Eng, 83, 153-165 (2015).CrossRef H. T. Hu, W. P. Lin, and F. T. Tu, “Failure analysis of fiber-reinforced composite laminates subjected to biaxial loads,” Compos. Part B-Eng, 83, 153-165 (2015).CrossRef
25.
go back to reference A. M. Gadade, A. Lal, and B. N. Singh, “Finite element implementation of Puck’s failure criterion for failure analysis of laminated plate subjected to biaxial loadings,” Aerosp. Sci. Technol., 55, 227-241 (2016).CrossRef A. M. Gadade, A. Lal, and B. N. Singh, “Finite element implementation of Puck’s failure criterion for failure analysis of laminated plate subjected to biaxial loadings,” Aerosp. Sci. Technol., 55, 227-241 (2016).CrossRef
Metadata
Title
A Progressive FE Failure Model for Laminates under Biaxial Loading
Authors
H. Zhu
Z. X. Guo
M. Zhu
J. J. Cui
Q. He
Y. C. Li
Publication date
20-05-2020
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 2/2020
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-020-09873-7

Other articles of this Issue 2/2020

Mechanics of Composite Materials 2/2020 Go to the issue

Premium Partners