Skip to main content
Top
Published in: Acta Mechanica 5/2020

30-01-2020 | Original Paper

A quadrature element formulation of geometrically nonlinear laminated composite shells incorporating thickness stretch and drilling rotation

Authors: Run Zhang, Hongzhi Zhong, Xiaohu Yao, Qiang Han

Published in: Acta Mechanica | Issue 5/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a weak form quadrature element formulation of a geometrically nonlinear shell model is proposed and applied for analysis of laminated composite shell structures. Thickness stretch parameters of the shell are incorporated for introducing 3D constitutive relations in the formulation. A drilling rotation constraint on the basis of polar decomposition of a modified deformation gradient is enforced by the Lagrange multiplier method and employed for implementing spatial finite rotations. The present formulation is shown to be feasible to model complex structures and circumvent locking problems naturally. A series of numerical benchmark examples are presented to demonstrate the validity of the formulation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Naghdi, P.M.: The theory of shells and plates. In: Truesdell, C. (ed.) Handbuch der Physik a/2, vol. 6, pp. 425–640. Berlin, Springer (1972) Naghdi, P.M.: The theory of shells and plates. In: Truesdell, C. (ed.) Handbuch der Physik a/2, vol. 6, pp. 425–640. Berlin, Springer (1972)
2.
go back to reference MacNeal, R.H., Wilson, C.T., Harder, R.L., Hoff, C.C.: The treatment of shell normals in finite element analysis. Finite Elem. Anal. Des. 30, 235–242 (1998)MATH MacNeal, R.H., Wilson, C.T., Harder, R.L., Hoff, C.C.: The treatment of shell normals in finite element analysis. Finite Elem. Anal. Des. 30, 235–242 (1998)MATH
3.
go back to reference Brank, B., Korelc, J., Ibrahimberović, A.: Nonlinear shell formulation accounting for through-the-thickness stretching and its finite element implementation. Comp. Struct. 80, 699–717 (2002) Brank, B., Korelc, J., Ibrahimberović, A.: Nonlinear shell formulation accounting for through-the-thickness stretching and its finite element implementation. Comp. Struct. 80, 699–717 (2002)
4.
go back to reference Simo, J.C., Rifai, M.S., Fox, D.D.: On a stress resultant geometrically exact shell model. Part IV: variable thickness shells with through-the-thickness stretching. Comp. Methods. Appl. Mech. Eng. 81, 91–126 (1990)MATH Simo, J.C., Rifai, M.S., Fox, D.D.: On a stress resultant geometrically exact shell model. Part IV: variable thickness shells with through-the-thickness stretching. Comp. Methods. Appl. Mech. Eng. 81, 91–126 (1990)MATH
5.
go back to reference Büchter, N., Ramm, E., Roehl, D.: Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept. Int. J. Numer. Meth. Eng. 37, 2551–2568 (1994)MATH Büchter, N., Ramm, E., Roehl, D.: Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept. Int. J. Numer. Meth. Eng. 37, 2551–2568 (1994)MATH
6.
go back to reference Braun, M., Bischoff, M., Ramm, E.: Nonlinear shell formulations for complete three-dimensional constitutive laws including composites and laminates. Comput. Mech. 15, 1–18 (1994)MATH Braun, M., Bischoff, M., Ramm, E.: Nonlinear shell formulations for complete three-dimensional constitutive laws including composites and laminates. Comput. Mech. 15, 1–18 (1994)MATH
7.
go back to reference Sansour, C.: A theory and finite element formulation of shells at finite deformations involving thickness change: circumventing the use of a rotation tensor. Arch. Appl. Mech. 65, 194–216 (1995)MATH Sansour, C.: A theory and finite element formulation of shells at finite deformations involving thickness change: circumventing the use of a rotation tensor. Arch. Appl. Mech. 65, 194–216 (1995)MATH
8.
go back to reference Brank, B.: Nonlinear shell models with seven kinematic parameters. Comp. Methods. Appl. Mech. Eng. 194, 2336–2362 (2005)MATH Brank, B.: Nonlinear shell models with seven kinematic parameters. Comp. Methods. Appl. Mech. Eng. 194, 2336–2362 (2005)MATH
9.
go back to reference Payette, G.S., Reddy, J.N.: A seven-parameter spectral/hp finite element formulation for isotropic, laminated composite and functionally graded shell structures. Comp. Methods. Appl. Mech. Eng. 278, 664–704 (2014)MathSciNetMATH Payette, G.S., Reddy, J.N.: A seven-parameter spectral/hp finite element formulation for isotropic, laminated composite and functionally graded shell structures. Comp. Methods. Appl. Mech. Eng. 278, 664–704 (2014)MathSciNetMATH
10.
go back to reference Yamamoto, T., Yamada, T., Matsui, K.: A quadrilateral shell element with degree of freedom to represent thickness-stretch. Comput. Mech. 59, 625–646 (2017)MathSciNetMATH Yamamoto, T., Yamada, T., Matsui, K.: A quadrilateral shell element with degree of freedom to represent thickness-stretch. Comput. Mech. 59, 625–646 (2017)MathSciNetMATH
11.
go back to reference Leonetti, L., Liguori, F., Magisano, D., Garcea, G.: An efficient isogeometric solid-shell formulation for geometrically nonlinear analysis of elastic shells. Comp. Methods. Appl. Mech. Eng. 331, 159–183 (2018)MathSciNet Leonetti, L., Liguori, F., Magisano, D., Garcea, G.: An efficient isogeometric solid-shell formulation for geometrically nonlinear analysis of elastic shells. Comp. Methods. Appl. Mech. Eng. 331, 159–183 (2018)MathSciNet
12.
go back to reference Allman, D.J.: A compatible triangular element including vertex rotations for plane elasticity problems. Comp. Struct. 19, 1–8 (1984)MATH Allman, D.J.: A compatible triangular element including vertex rotations for plane elasticity problems. Comp. Struct. 19, 1–8 (1984)MATH
13.
go back to reference Hughes, T.J.R., Brezzi, f: On drilling degrees of freedom. Comp. Methods. Appl. Mech. Eng. 72, 105–121 (1989)MathSciNetMATH Hughes, T.J.R., Brezzi, f: On drilling degrees of freedom. Comp. Methods. Appl. Mech. Eng. 72, 105–121 (1989)MathSciNetMATH
14.
go back to reference Kugler, S., Fotiu, P.A., Murin, J.: A highly efficient membrane finite element with drilling degrees of freedom. Acta. Mech. 213, 323–348 (2010)MATH Kugler, S., Fotiu, P.A., Murin, J.: A highly efficient membrane finite element with drilling degrees of freedom. Acta. Mech. 213, 323–348 (2010)MATH
15.
go back to reference Fox, D.D., Simo, J.C.: A drill rotation formulation for geometrically exact shells. Comput. Methods. Appl. Mech. Eng. 98, 329–343 (1992)MathSciNetMATH Fox, D.D., Simo, J.C.: A drill rotation formulation for geometrically exact shells. Comput. Methods. Appl. Mech. Eng. 98, 329–343 (1992)MathSciNetMATH
16.
go back to reference Rebel, G.: Finite Rotation Shell Theory Including Drill Rotations and Its Finite Element Implementations. Phd dissertation, Delft University of Technology (1998) Rebel, G.: Finite Rotation Shell Theory Including Drill Rotations and Its Finite Element Implementations. Phd dissertation, Delft University of Technology (1998)
17.
go back to reference Chróścielewski, J., Makowski, J., Stumpf, H.: Genuinely resultant shell finite elements accounting for geometric and material non-linearity. Int. J. Numer. Methods. Eng. 35, 63–94 (1992)MATH Chróścielewski, J., Makowski, J., Stumpf, H.: Genuinely resultant shell finite elements accounting for geometric and material non-linearity. Int. J. Numer. Methods. Eng. 35, 63–94 (1992)MATH
18.
go back to reference Chróścielewski, J., Kreja, I., Sabik, A., Witkowski, W.: Modeling of composite shells in 6-parameter nonlinear theory with drilling degree of freedom. Mech. Adv. Mater. Struct. 18, 403–419 (2011) Chróścielewski, J., Kreja, I., Sabik, A., Witkowski, W.: Modeling of composite shells in 6-parameter nonlinear theory with drilling degree of freedom. Mech. Adv. Mater. Struct. 18, 403–419 (2011)
19.
go back to reference Chróścielewski, J., Sabik, A., Sobczyk, B., Witkowski, W.: Nonlinear FEM 2D failure onset prediction of composite shells based on 6-parameter shell theory. Thin Wall. Struct. 105, 207–219 (2016) Chróścielewski, J., Sabik, A., Sobczyk, B., Witkowski, W.: Nonlinear FEM 2D failure onset prediction of composite shells based on 6-parameter shell theory. Thin Wall. Struct. 105, 207–219 (2016)
20.
go back to reference Yang, Y.B., Chang, J.T., Yau, J.D.: A simple nonlinear triangular plate element and strategies of computation for nonlinear analysis. Comp. Meth. in Appl. Mech. Eng. 178, 307–321 (1999)MATH Yang, Y.B., Chang, J.T., Yau, J.D.: A simple nonlinear triangular plate element and strategies of computation for nonlinear analysis. Comp. Meth. in Appl. Mech. Eng. 178, 307–321 (1999)MATH
21.
go back to reference Yang, Y.B., Lin, S.P., Chen, C.S.: Rigid body concept for geometric nonlinear analysis of 3D frames, plates and shells based on the updated Lagrangian formulation. Comp. Meth. in Appl. Mech. Eng. 196(7), 1178–1192 (2007)MATH Yang, Y.B., Lin, S.P., Chen, C.S.: Rigid body concept for geometric nonlinear analysis of 3D frames, plates and shells based on the updated Lagrangian formulation. Comp. Meth. in Appl. Mech. Eng. 196(7), 1178–1192 (2007)MATH
22.
go back to reference Yang, Y.B., Lin, S.P., Leu, L.J.: Solution strategy and rigid element for nonlinear analysis of elastic structures based on updated Lagrangian formulation. Eng. Struct. 29(6), 1189–1200 (2007) Yang, Y.B., Lin, S.P., Leu, L.J.: Solution strategy and rigid element for nonlinear analysis of elastic structures based on updated Lagrangian formulation. Eng. Struct. 29(6), 1189–1200 (2007)
23.
go back to reference Yang, Y.B., Lin, S.P., Wang, C.M.: Rigid element approach for deriving the geometric stiffness of curved beams for use in buckling analysis. J. Struct. Eng., ASCE 133(12), 1762–1771 (2007) Yang, Y.B., Lin, S.P., Wang, C.M.: Rigid element approach for deriving the geometric stiffness of curved beams for use in buckling analysis. J. Struct. Eng., ASCE 133(12), 1762–1771 (2007)
24.
go back to reference Zhong, H., Yu, T.: Flexural vibration analysis of an eccentric annular Mindlin plate. Arch. Appl. Mech. 77(4), 185–195 (2007)MATH Zhong, H., Yu, T.: Flexural vibration analysis of an eccentric annular Mindlin plate. Arch. Appl. Mech. 77(4), 185–195 (2007)MATH
25.
go back to reference Zhong, H., Yu, T.: A weak form quadrature element method for plane elasticity problems. Appl. Math. Model. 33(10), 3801–3814 (2009)MathSciNetMATH Zhong, H., Yu, T.: A weak form quadrature element method for plane elasticity problems. Appl. Math. Model. 33(10), 3801–3814 (2009)MathSciNetMATH
26.
go back to reference Bellman, R.E., Casti, J.: Differential quadrature and long term integration. J. Math. Anal. Appl. 34, 235–238 (1971)MathSciNetMATH Bellman, R.E., Casti, J.: Differential quadrature and long term integration. J. Math. Anal. Appl. 34, 235–238 (1971)MathSciNetMATH
27.
go back to reference Striz, A.G., Chen, W.L., Bert, C.W.: Static analysis of structures by the quadrature element method (QEM). Int. J. Solids Struct. 31(20), 2807–2818 (1994)MATH Striz, A.G., Chen, W.L., Bert, C.W.: Static analysis of structures by the quadrature element method (QEM). Int. J. Solids Struct. 31(20), 2807–2818 (1994)MATH
28.
go back to reference Zhong, H., Zhang, R., Xiao, N.: A quaternion-based weak form quadrature element formulation for spatial geometrically exact beams. Arch. Appl. Mech. 84(12), 1825–1840 (2014) Zhong, H., Zhang, R., Xiao, N.: A quaternion-based weak form quadrature element formulation for spatial geometrically exact beams. Arch. Appl. Mech. 84(12), 1825–1840 (2014)
29.
go back to reference Zhang, R., Zhong, H.: Weak form quadrature element analysis of geometrically exact shells. Int. J. Non-linear Mech. 71, 63–71 (2015) Zhang, R., Zhong, H.: Weak form quadrature element analysis of geometrically exact shells. Int. J. Non-linear Mech. 71, 63–71 (2015)
30.
go back to reference Zhang, R., Zhong, H.: A weak form quadrature element formulation for geometrically exact thin shell analysis. Comp. Struct. 202, 44–59 (2018) Zhang, R., Zhong, H.: A weak form quadrature element formulation for geometrically exact thin shell analysis. Comp. Struct. 202, 44–59 (2018)
31.
go back to reference He, R., Zhong, H.: Large deflection of elasto-plastic analysis of frames using the weak form quadrature element method. Finite Elem. Anal. Des. 509, 125–133 (2012) He, R., Zhong, H.: Large deflection of elasto-plastic analysis of frames using the weak form quadrature element method. Finite Elem. Anal. Des. 509, 125–133 (2012)
32.
go back to reference Jelenić, G., Crisfield, M.A.: Geometrically exact 3D beam theory: implementation of strain-invariant finite element for statics and dynamics. Comp. Methods. Appl. Mech. Eng. 171, 141–171 (1999)MathSciNetMATH Jelenić, G., Crisfield, M.A.: Geometrically exact 3D beam theory: implementation of strain-invariant finite element for statics and dynamics. Comp. Methods. Appl. Mech. Eng. 171, 141–171 (1999)MathSciNetMATH
33.
go back to reference Zhang, R., Zhong, H.: A weak form quadrature element formulation of geometrically exact shells incorporating drilling degrees of freedom. Comput. Mech. 63, 663–679 (2019)MathSciNetMATH Zhang, R., Zhong, H.: A weak form quadrature element formulation of geometrically exact shells incorporating drilling degrees of freedom. Comput. Mech. 63, 663–679 (2019)MathSciNetMATH
34.
go back to reference Carrera, E.: Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch. Comput. Meth. Eng. 9(2), 87–140 (2002)MathSciNetMATH Carrera, E.: Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch. Comput. Meth. Eng. 9(2), 87–140 (2002)MathSciNetMATH
35.
go back to reference Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theories and Analysis, 2nd edn. CRC Press, Boca Raton (2004) Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theories and Analysis, 2nd edn. CRC Press, Boca Raton (2004)
36.
go back to reference Crisfield, M.A.: Non-linear finite element analysis of solids and structures: volume 2: advanced topics. Wiley, West Sussex (1997)MATH Crisfield, M.A.: Non-linear finite element analysis of solids and structures: volume 2: advanced topics. Wiley, West Sussex (1997)MATH
37.
go back to reference Davis, P.I., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, Orlando (1984)MATH Davis, P.I., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, Orlando (1984)MATH
38.
go back to reference Knight, N.F.: The Raasch challenge for shell elements. AIAA J. 75, 237–250 (1997)MATH Knight, N.F.: The Raasch challenge for shell elements. AIAA J. 75, 237–250 (1997)MATH
39.
go back to reference ABAQUS, Version 6.14., 2014. Dassault Systèmes Simulia Corp., Providence, RI, USA ABAQUS, Version 6.14., 2014. Dassault Systèmes Simulia Corp., Providence, RI, USA
40.
go back to reference Sze, K.Y., Liu, X.H., Lo, S.H.: Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elem. Anal. Des. 40, 1551–1569 (2004) Sze, K.Y., Liu, X.H., Lo, S.H.: Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elem. Anal. Des. 40, 1551–1569 (2004)
41.
go back to reference Wardle, B.L.: Solution to the incorrect benchmark shell-buckling problem. AIAA J. 46(2), 381–387 (2008) Wardle, B.L.: Solution to the incorrect benchmark shell-buckling problem. AIAA J. 46(2), 381–387 (2008)
42.
go back to reference Zhou, Y., Stanciulescu, I., Eason, T., Spottswood, M.: Nonlinear elastic buckling and postbuckling analysis of cylindrical panels. Finite Elem. Anal. Des. 96, 41–50 (2015)MathSciNet Zhou, Y., Stanciulescu, I., Eason, T., Spottswood, M.: Nonlinear elastic buckling and postbuckling analysis of cylindrical panels. Finite Elem. Anal. Des. 96, 41–50 (2015)MathSciNet
43.
go back to reference Stanić, A., Brank, B., Korelc, J.: On path-following methods for structural failure problems. Comput. Mech. 58, 281–306 (2016)MathSciNetMATH Stanić, A., Brank, B., Korelc, J.: On path-following methods for structural failure problems. Comput. Mech. 58, 281–306 (2016)MathSciNetMATH
44.
go back to reference Basar, Y., Ding, Y.H.: Finite-rotation elements for the non-linear analysis of thin shell structures. Int. J. Solids. Struct. 26(1), 83–97 (1990)MATH Basar, Y., Ding, Y.H.: Finite-rotation elements for the non-linear analysis of thin shell structures. Int. J. Solids. Struct. 26(1), 83–97 (1990)MATH
45.
go back to reference Simo, J.C.: On a stress resultant geometrically exact shell model. Part VII: shell intersections with 5/6-DOF finite element formulations. Comp. Methods. Appl. Mech. Eng. 108, 319–339 (1993)MATH Simo, J.C.: On a stress resultant geometrically exact shell model. Part VII: shell intersections with 5/6-DOF finite element formulations. Comp. Methods. Appl. Mech. Eng. 108, 319–339 (1993)MATH
46.
go back to reference Li, Z., Li, T., Vu-Quoc, L., Izzuddin, B.A., Zhuo, X., Fang, Q.: A nine-node corotational curved quadrilateral shell element for smooth, folded, and multishell structures. Int. J. Numer. Methods. Eng. 116, 570–600 (2018)MathSciNet Li, Z., Li, T., Vu-Quoc, L., Izzuddin, B.A., Zhuo, X., Fang, Q.: A nine-node corotational curved quadrilateral shell element for smooth, folded, and multishell structures. Int. J. Numer. Methods. Eng. 116, 570–600 (2018)MathSciNet
47.
go back to reference Talbot, M., Dhatt, G.: Three discrete Kirchhoff elements for shell analysis with large geometrical non-linearities and bifurcations. Eng. Comput. 4, 15–22 (1987) Talbot, M., Dhatt, G.: Three discrete Kirchhoff elements for shell analysis with large geometrical non-linearities and bifurcations. Eng. Comput. 4, 15–22 (1987)
48.
go back to reference Chróścielewski, J., Makowski, J., Stumpf, H.: Finite element analysis of smooth, folded and multi-shell structures. Comp. Methods. Appl. Mech. Eng. 141, 1–46 (1997)MATH Chróścielewski, J., Makowski, J., Stumpf, H.: Finite element analysis of smooth, folded and multi-shell structures. Comp. Methods. Appl. Mech. Eng. 141, 1–46 (1997)MATH
Metadata
Title
A quadrature element formulation of geometrically nonlinear laminated composite shells incorporating thickness stretch and drilling rotation
Authors
Run Zhang
Hongzhi Zhong
Xiaohu Yao
Qiang Han
Publication date
30-01-2020
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 5/2020
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02606-5

Other articles of this Issue 5/2020

Acta Mechanica 5/2020 Go to the issue

Premium Partners