Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Experimental Mechanics 7/2020

15-06-2020 | Research paper

A Quantitative In Situ SEM Bending Method for Stress Relaxation of Microscale Materials at Room Temperature

Authors: Y. Yan, W. Chen, T. Sumigawa, X. Wang, T. Kitamura, F. Z. Xuan

Published in: Experimental Mechanics | Issue 7/2020

Login to get access
share
SHARE

Abstract

Although the time-dependent deformation behaviors of microscale materials have been investigated through experiments with uniaxial loading conditions, the influence of the strain gradient has not been clearly clarified due to the lack of appropriate testing methods. In the current study, to investigate the stress relaxation behavior of microscale single-crystal copper (Cu) at room temperature, a quantitative in situ SEM bending experiment is presented using microcantilever specimens of single-crystal Cu. The microcantilever specimens were fabricated using a focused ion beam, and a tungsten (W) layer was deposited onto the front surface to eliminate the error induced by the penetration of the stiff indenter into the metallic specimen. The yield stress of microscale single-crystal Cu is determined to be 445 MPa by a monotonic loading test, showing an apparent size effect, and no strain hardening is observed due to single-slip deformation. On the other hand, the stress relaxation behavior of the microscale single-crystal Cu consists of both a continuous stress relaxation and an abrupt stress decrease due to a strain burst. The activated volume in each dwell stage is obtained by thermodynamics theory and is found to be mainly related to the abrupt stress decrease. The value of the activated volume indicates that the continuous stress drops in the 1st and 2nd dwell stages are attributed to the evolution of dislocation structures by the single slip on system B4, while the dislocation pile-up near the neutral plane leads to the dominance of cross slip on the stress relaxation behavior in the bending plateau. The proposed microcantilever bending experiment is applicable to explore the time-dependent deformation behavior of small-scale materials.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Literature
1.
go back to reference Xu F, Zhu Y (2012) Highly conductive and stretchable silver nanowire conductors. Adv Mater 24(37):5117–5122 Xu F, Zhu Y (2012) Highly conductive and stretchable silver nanowire conductors. Adv Mater 24(37):5117–5122
2.
go back to reference Cheng T, Zhang Y, Lai WY, Huang W (2015) Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability. Adv Mater 27(22):3349–3376 Cheng T, Zhang Y, Lai WY, Huang W (2015) Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability. Adv Mater 27(22):3349–3376
3.
go back to reference Wang X, Liu Z, Zhang T (2017) Flexible sensing electronics for wearable/attachable health monitoring. Small 13:1602790 Wang X, Liu Z, Zhang T (2017) Flexible sensing electronics for wearable/attachable health monitoring. Small 13:1602790
4.
go back to reference Dong K, Choe HS, Wang X, Liu H, Saha B, Ko C, Deng Y, Tom KB, Lou S, Wang L, Grigoropoulos CP, You Z, Yao J, Wu J (2018) A 0.2 V micro-electromechanical switch enabled by a phase transition. Small 14:e1703621 Dong K, Choe HS, Wang X, Liu H, Saha B, Ko C, Deng Y, Tom KB, Lou S, Wang L, Grigoropoulos CP, You Z, Yao J, Wu J (2018) A 0.2 V micro-electromechanical switch enabled by a phase transition. Small 14:e1703621
5.
go back to reference Gómez-Cortés JF, Nó ML, Ruíz-Larrea I, Breczewski T, López-Echarri A, Schuh CA, San Juan JM (2019) Ultrahigh superelastic damping at the nano-scale: a robust phenomenon to improve smart MEMS devices. Acta Mater 166:346–356 Gómez-Cortés JF, Nó ML, Ruíz-Larrea I, Breczewski T, López-Echarri A, Schuh CA, San Juan JM (2019) Ultrahigh superelastic damping at the nano-scale: a robust phenomenon to improve smart MEMS devices. Acta Mater 166:346–356
6.
go back to reference Huang Y, Vasan ASS, Doraiswami R, Osterman M (2012) MEMS reliability review. IEEE Trans Device Mat Rel 12(2):482–493 Huang Y, Vasan ASS, Doraiswami R, Osterman M (2012) MEMS reliability review. IEEE Trans Device Mat Rel 12(2):482–493
7.
go back to reference Yoo B-G, Kim J-Y, Kim Y-J, Choi I-C, Shim S, Tsui TY, Bei H, Ramamurty U, Jang J-i (2012) Increased time-dependent room temperature plasticity in metallic glass nanopillars and its size-dependency. Int J Plast 37:108–118 Yoo B-G, Kim J-Y, Kim Y-J, Choi I-C, Shim S, Tsui TY, Bei H, Ramamurty U, Jang J-i (2012) Increased time-dependent room temperature plasticity in metallic glass nanopillars and its size-dependency. Int J Plast 37:108–118
8.
go back to reference Choi I-C, Kim Y-J, Seok M-Y, Yoo B-G, Kim J-Y, Wang Y, Jang J-i (2013) Nanoscale room temperature creep of nanocrystalline nickel pillars at low stresses. Int J Plast 41:53–64 Choi I-C, Kim Y-J, Seok M-Y, Yoo B-G, Kim J-Y, Wang Y, Jang J-i (2013) Nanoscale room temperature creep of nanocrystalline nickel pillars at low stresses. Int J Plast 41:53–64
9.
go back to reference Gu R, Ngan AHW (2014) Size-dependent creep of duralumin micro-pillars at room temperature. In J Plasticity 55:219–231 Gu R, Ngan AHW (2014) Size-dependent creep of duralumin micro-pillars at room temperature. In J Plasticity 55:219–231
10.
go back to reference Kim Y-J, Qaiser N, Han SM (2016) Time-dependent deformation of Sn micropillars. Mater Des 102:168–173 Kim Y-J, Qaiser N, Han SM (2016) Time-dependent deformation of Sn micropillars. Mater Des 102:168–173
11.
go back to reference Mohanty G, Wehrs J, Boyce BL, Taylor A, Hasegawa M, Philippe L, Michler J (2016) Room temperature stress relaxation in nanocrystalline Ni measured by micropillar compression and miniature tension. J Mater Res 31(8):1085–1095 Mohanty G, Wehrs J, Boyce BL, Taylor A, Hasegawa M, Philippe L, Michler J (2016) Room temperature stress relaxation in nanocrystalline Ni measured by micropillar compression and miniature tension. J Mater Res 31(8):1085–1095
12.
go back to reference Guo S, He Y, Liu D, Lei J, Li Z, Ding H (2017) Torsional stress relaxation behavior of microscale copper wire. Mater Sci Eng A 698:277–281 Guo S, He Y, Liu D, Lei J, Li Z, Ding H (2017) Torsional stress relaxation behavior of microscale copper wire. Mater Sci Eng A 698:277–281
13.
go back to reference Guo S, He Y, Li Z, Lei J, Liu D (2019) Size and stress dependences in the tensile stress relaxation of thin copper wires at room temperature. Int J Plast 112:278–296 Guo S, He Y, Li Z, Lei J, Liu D (2019) Size and stress dependences in the tensile stress relaxation of thin copper wires at room temperature. Int J Plast 112:278–296
14.
go back to reference Bhowmick S, Espinosa H, Jungjohann K, Pardoen T, Pierron O (2019) Advanced microelectromechanical systems-based nanomechanical testing: beyond stress and strain measurements. MRS Bull 44(6):487–493 Bhowmick S, Espinosa H, Jungjohann K, Pardoen T, Pierron O (2019) Advanced microelectromechanical systems-based nanomechanical testing: beyond stress and strain measurements. MRS Bull 44(6):487–493
15.
go back to reference Kacher J, Kirchlechner C, Michler J, Polatidis E, Schwaiger R, Van Swygenhoven H, Taheri M, Legros M (2019) Impact of in situ nanomechanics on physical metallurgy. MRS Bull 44(6):465–470 Kacher J, Kirchlechner C, Michler J, Polatidis E, Schwaiger R, Van Swygenhoven H, Taheri M, Legros M (2019) Impact of in situ nanomechanics on physical metallurgy. MRS Bull 44(6):465–470
16.
go back to reference Motz C, Schöberl T, Pippan R (2005) Mechanical properties of micro-sized copper bending beams machined by the focused ion beam technique. Acta Mater 53(15):4269–4279 Motz C, Schöberl T, Pippan R (2005) Mechanical properties of micro-sized copper bending beams machined by the focused ion beam technique. Acta Mater 53(15):4269–4279
17.
go back to reference Motz C, Weygand D, Senger J, Gumbsch P (2008) Micro-bending tests: a comparison between three-dimensional discrete dislocation dynamics simulations and experiments. Acta Mater 56(9):1942–1955 Motz C, Weygand D, Senger J, Gumbsch P (2008) Micro-bending tests: a comparison between three-dimensional discrete dislocation dynamics simulations and experiments. Acta Mater 56(9):1942–1955
18.
go back to reference Kiener D, Motz C, Rester M, Jenko M, Dehm G (2007) FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mater Sci Eng A 459(1–2):262–272 Kiener D, Motz C, Rester M, Jenko M, Dehm G (2007) FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mater Sci Eng A 459(1–2):262–272
19.
go back to reference Uchic MD, Shade PA, Dimiduk DM (2009) Plasticity of micrometer-scale single crystals in compression. Annu Rev Mater Res 39(1):361–386 Uchic MD, Shade PA, Dimiduk DM (2009) Plasticity of micrometer-scale single crystals in compression. Annu Rev Mater Res 39(1):361–386
20.
go back to reference Demir E, Raabe D (2010) Mechanical and microstructural single-crystal Bauschinger effects: observation of reversible plasticity in copper during bending. Acta Mater 58(18):6055–6063 Demir E, Raabe D (2010) Mechanical and microstructural single-crystal Bauschinger effects: observation of reversible plasticity in copper during bending. Acta Mater 58(18):6055–6063
21.
go back to reference Zhu Y, Ke C, Espinosa HD (2007) Experimental techniques for the mechanical characterization of one-dimensional nanostructures. Exp Mech 47:7–24 Zhu Y, Ke C, Espinosa HD (2007) Experimental techniques for the mechanical characterization of one-dimensional nanostructures. Exp Mech 47:7–24
22.
go back to reference Takahashi Y, Arai S, Yamamoto Y, Higuchi K, Kondo H, Kitagawa Y, Muto S, Tanaka N (2015) Evaluation of interfacial fracture strength in micro-scale components combined with high-voltage environmental electron microscopy. Exp Mech 55:1047–1056 Takahashi Y, Arai S, Yamamoto Y, Higuchi K, Kondo H, Kitagawa Y, Muto S, Tanaka N (2015) Evaluation of interfacial fracture strength in micro-scale components combined with high-voltage environmental electron microscopy. Exp Mech 55:1047–1056
23.
go back to reference Fan S, Jiang C, Lu H, Li F, Yang Y, Shen Y, Lu Y (2019) In situ micromechanical characterization of metallic glass microwires under torsional loading. Exp Mech 59(3):361–368 Fan S, Jiang C, Lu H, Li F, Yang Y, Shen Y, Lu Y (2019) In situ micromechanical characterization of metallic glass microwires under torsional loading. Exp Mech 59(3):361–368
24.
go back to reference Yan Y, Sumigawa T, Guo L, Kitamura T (2018) Fracture nanomechanics. In: Hsueh CH, Schmauder S, Chen CS, Chawla KK, Chawla N, Chen W, Kagawa Y (eds) Handbook of mechanics of materials. Springer, Singapore, pp 1–38 Yan Y, Sumigawa T, Guo L, Kitamura T (2018) Fracture nanomechanics. In: Hsueh CH, Schmauder S, Chen CS, Chawla KK, Chawla N, Chen W, Kagawa Y (eds) Handbook of mechanics of materials. Springer, Singapore, pp 1–38
25.
go back to reference Yan Y, Sumigawa T, Kitamura T (2018) A robust in situ TEM experiment for characterizing the fracture toughness of the tnterface in nanoscale multilayers. Exp Mech 58(5):721–731 Yan Y, Sumigawa T, Kitamura T (2018) A robust in situ TEM experiment for characterizing the fracture toughness of the tnterface in nanoscale multilayers. Exp Mech 58(5):721–731
26.
go back to reference Sumigawa T, Matsumoto K, Tsuchiya T, Kitamura T (2012) Fatigue of 1μm-scale gold by vibration with reduced resonant frequency. Mater Sci Eng A 556:429–436 Sumigawa T, Matsumoto K, Tsuchiya T, Kitamura T (2012) Fatigue of 1μm-scale gold by vibration with reduced resonant frequency. Mater Sci Eng A 556:429–436
27.
go back to reference Sumigawa T, Byungwoon K, Mizuno Y, Morimura T, Kitamura T (2018) In situ observation on formation process of nanoscale cracking during tension-compression fatigue of single crystal copper micron-scale specimen. Acta Mater 153:270–278 Sumigawa T, Byungwoon K, Mizuno Y, Morimura T, Kitamura T (2018) In situ observation on formation process of nanoscale cracking during tension-compression fatigue of single crystal copper micron-scale specimen. Acta Mater 153:270–278
28.
go back to reference Kiener D, Motz C, Grosinger W, Weygand D, Pippan R (2010) Cyclic response of copper single crystal micro-beams. Scr Mater 63(5):500–503 Kiener D, Motz C, Grosinger W, Weygand D, Pippan R (2010) Cyclic response of copper single crystal micro-beams. Scr Mater 63(5):500–503
29.
go back to reference Wimmer A, Heinz W, Detzel T, Robl W, Nellessen M, Kirchlechner C, Dehm G (2015) Cyclic bending experiments on free-standing cu micron lines observed by electron backscatter diffraction. Acta Mater 83:460–469 Wimmer A, Heinz W, Detzel T, Robl W, Nellessen M, Kirchlechner C, Dehm G (2015) Cyclic bending experiments on free-standing cu micron lines observed by electron backscatter diffraction. Acta Mater 83:460–469
30.
go back to reference Bufford DC, Stauffer D, Mook WM, Syed Asif SA, Boyce BL, Hattar K (2016) High cycle fatigue in the transmission electron microscope. Nano Lett 16(8):4946–4953 Bufford DC, Stauffer D, Mook WM, Syed Asif SA, Boyce BL, Hattar K (2016) High cycle fatigue in the transmission electron microscope. Nano Lett 16(8):4946–4953
31.
go back to reference Zhang H, Jiang C, Lu Y (2016) Low-cycle fatigue testing of Ni nanowires based on a micro-mechanical device. Exp Mech 57(3):495–500 Zhang H, Jiang C, Lu Y (2016) Low-cycle fatigue testing of Ni nanowires based on a micro-mechanical device. Exp Mech 57(3):495–500
32.
go back to reference Barrios A, Gupta S, Castelluccio GM, Pierron ON (2018) Quantitative in situ SEM high cycle fatigue: the critical role of oxygen on nanoscale-void-controlled nucleation and propagation of small cracks in Ni microbeams. Nano Lett 18(4):2595–2602 Barrios A, Gupta S, Castelluccio GM, Pierron ON (2018) Quantitative in situ SEM high cycle fatigue: the critical role of oxygen on nanoscale-void-controlled nucleation and propagation of small cracks in Ni microbeams. Nano Lett 18(4):2595–2602
33.
go back to reference Zhong L, Sansoz F, He Y, Wang C, Zhang Z, Mao SX (2017) Slip-activated surface creep with room-temperature super-elongation in metallic nanocrystals. Nat Mater 16(4):439–445 Zhong L, Sansoz F, He Y, Wang C, Zhang Z, Mao SX (2017) Slip-activated surface creep with room-temperature super-elongation in metallic nanocrystals. Nat Mater 16(4):439–445
34.
go back to reference Hirakata H, Shimbara K, Kondo T, Minoshima K (2018) Size effect on tensile creep behavior of micrometer-sized single-crystal gold. Materialia 1:221–228 Hirakata H, Shimbara K, Kondo T, Minoshima K (2018) Size effect on tensile creep behavior of micrometer-sized single-crystal gold. Materialia 1:221–228
35.
go back to reference Hosseinian E, Legros M, Pierron ON (2016) Quantifying and observing viscoplasticity at the nanoscale: highly localized deformation mechanisms in ultrathin nanocrystalline gold films. Nanoscale 8(17):9234–9244 Hosseinian E, Legros M, Pierron ON (2016) Quantifying and observing viscoplasticity at the nanoscale: highly localized deformation mechanisms in ultrathin nanocrystalline gold films. Nanoscale 8(17):9234–9244
36.
go back to reference Gupta S, Pierron O (2017) A MEMS tensile testing technique for measuring true activation volume and effective stress in nanocrystalline ultrathin microbeams. J Microelectromech Syst 26(5):1082–1092 Gupta S, Pierron O (2017) A MEMS tensile testing technique for measuring true activation volume and effective stress in nanocrystalline ultrathin microbeams. J Microelectromech Syst 26(5):1082–1092
37.
go back to reference Suresh S, Nieh TG, Choi BW (1999) Nano-indentation of copper thin films on silicon substrates. Scr Mater 41(9):951–957 Suresh S, Nieh TG, Choi BW (1999) Nano-indentation of copper thin films on silicon substrates. Scr Mater 41(9):951–957
38.
go back to reference Saha R, Nix WD (2001) Soft films on hard substrates-nanoindentation of tungsten films on sapphire substrates. Mater Sci Eng A 319–321:898–901 Saha R, Nix WD (2001) Soft films on hard substrates-nanoindentation of tungsten films on sapphire substrates. Mater Sci Eng A 319–321:898–901
39.
go back to reference Kiener D, Motz C, Schöberl T, Jenko M, Dehm G (2006) Determination of mechanical properties of copper at the micron scale. Adv Eng Mater 8(11):1119–1125 Kiener D, Motz C, Schöberl T, Jenko M, Dehm G (2006) Determination of mechanical properties of copper at the micron scale. Adv Eng Mater 8(11):1119–1125
40.
go back to reference Demir E, Raabe D, Roters F (2010) The mechanical size effect as a mean-field breakdown phenomenon: example of microscale single crystal beam bending. Acta Mater 58(5):1876–1886 Demir E, Raabe D, Roters F (2010) The mechanical size effect as a mean-field breakdown phenomenon: example of microscale single crystal beam bending. Acta Mater 58(5):1876–1886
41.
go back to reference Feltham P, Spears CJ (2013) Stress relaxation in single crystals of copper and α-brasses. Metal Sci J 2(1):183–186 Feltham P, Spears CJ (2013) Stress relaxation in single crystals of copper and α-brasses. Metal Sci J 2(1):183–186
42.
go back to reference Dotsenko VI (1979) Stress relaxation in crystals. Phys Status Solidi B 93:11–43 Dotsenko VI (1979) Stress relaxation in crystals. Phys Status Solidi B 93:11–43
43.
go back to reference Yang XS, Wang YJ, Wang GY, Zhai HR, Dai LH, Zhang TY (2016) Time, stress, and temperature-dependent deformation in nanostructured copper: stress relaxation tests and simulations. Acta Mater 108:252–263 Yang XS, Wang YJ, Wang GY, Zhai HR, Dai LH, Zhang TY (2016) Time, stress, and temperature-dependent deformation in nanostructured copper: stress relaxation tests and simulations. Acta Mater 108:252–263
44.
go back to reference Wang Y, Hamza A, Ma E (2006) Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater 54(10):2715–2726 Wang Y, Hamza A, Ma E (2006) Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater 54(10):2715–2726
45.
go back to reference Lu L, Zhu T, Shen Y, Dao M, Lu K, Suresh S (2009) Stress relaxation and the structure size-dependence of plastic deformation in nanotwinned copper. Acta Mater 57(17):5165–5173 Lu L, Zhu T, Shen Y, Dao M, Lu K, Suresh S (2009) Stress relaxation and the structure size-dependence of plastic deformation in nanotwinned copper. Acta Mater 57(17):5165–5173
Metadata
Title
A Quantitative In Situ SEM Bending Method for Stress Relaxation of Microscale Materials at Room Temperature
Authors
Y. Yan
W. Chen
T. Sumigawa
X. Wang
T. Kitamura
F. Z. Xuan
Publication date
15-06-2020
Publisher
Springer US
Published in
Experimental Mechanics / Issue 7/2020
Print ISSN: 0014-4851
Electronic ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-020-00611-7