Skip to main content
Top
Published in: Telecommunication Systems 2/2021

11-02-2021

A queueing model for a wireless sensor node using energy harvesting

Author: Chris Blondia

Published in: Telecommunication Systems | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper we propose a generic queueing model that can be used to evaluate the performance of a wireless sensor node that uses energy harvesting. The alteration of such a device between the transmit and sleep mode (or between consuming energy and harvesting energy), is modeled by means of a finite capacity queueing system with repeated server vacations. The duration of a service, resp. vacation, is determined by the available energy at the start of the service, resp. vacation. Therefor we introduce in the model a variable that keeps track of the available energy. The system occupancy and the available energy are observed at inspection instants (i.e., the end of a service or of a vacation), resulting in a discrete-time Markov Chain. We derive closed form formulas for the system occupancy distribution at inspection instants and at arbitrary time instants together with the Laplace transform of the waiting time distribution. The possible use of the model to evaluate the system’s performance for various parameter values is illustrated by means of a number of examples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Shaikh, F. K., & Zeadally, S. (2016). Energy harvesting in wireless sensor networks: a comprehensive review. Renewable and Sustainable Energy Reviews, 55, 1041–1054.CrossRef Shaikh, F. K., & Zeadally, S. (2016). Energy harvesting in wireless sensor networks: a comprehensive review. Renewable and Sustainable Energy Reviews, 55, 1041–1054.CrossRef
2.
go back to reference Ahmed, I., Butt, M. M., Psomas, C., Mohammed, A., Krikidis, I., & Guizani, M. (2015). Survey on energy harvesting wireless communications: challenges and opportunities for radio resource allocation. Computer Networks, 88, 234–248.CrossRef Ahmed, I., Butt, M. M., Psomas, C., Mohammed, A., Krikidis, I., & Guizani, M. (2015). Survey on energy harvesting wireless communications: challenges and opportunities for radio resource allocation. Computer Networks, 88, 234–248.CrossRef
3.
go back to reference C. Delgado, J.M. Sanz, C. Blondia, J. Famaey (2020), Battery-less LoRaWAN communications using energy harvesting: modeling and characterization. IEEE Internet of Things Journal. C. Delgado, J.M. Sanz, C. Blondia, J. Famaey (2020), Battery-less LoRaWAN communications using energy harvesting: modeling and characterization. IEEE Internet of Things Journal.
4.
go back to reference Patil, K., & Fiems, D. (2018). The value of information in energy harvesting sensor networks. Operations Research Letters, 46(3), 362–366.CrossRef Patil, K., & Fiems, D. (2018). The value of information in energy harvesting sensor networks. Operations Research Letters, 46(3), 362–366.CrossRef
5.
go back to reference A. Mouapi and N. Hakem (2016), Performance evaluation of wireless sensor node powered by RF energy harvesting. In Proceedings of the 16th Mediterranean Microwave Symposium (MMS), Abu Dhabi, 1–4. A. Mouapi and N. Hakem (2016), Performance evaluation of wireless sensor node powered by RF energy harvesting. In Proceedings of the 16th Mediterranean Microwave Symposium (MMS), Abu Dhabi, 1–4.
6.
go back to reference Kosunalp, S. (2015). MAC protocols for energy harvesting wireless sensor networks: a survey. ETRI Journal, 37(4), 804–812.CrossRef Kosunalp, S. (2015). MAC protocols for energy harvesting wireless sensor networks: a survey. ETRI Journal, 37(4), 804–812.CrossRef
7.
go back to reference Sherazi, H. H. R., Grieco, L. A., & Boggia, G. (2018). A comprehensive review on energy harvesting MAC protocols in WSNs: challenges and tradeoffs. Ad Hoc Networks, 17, 117–134.CrossRef Sherazi, H. H. R., Grieco, L. A., & Boggia, G. (2018). A comprehensive review on energy harvesting MAC protocols in WSNs: challenges and tradeoffs. Ad Hoc Networks, 17, 117–134.CrossRef
8.
go back to reference Mitici, M. A., Goseling, J., de Graaf, M., & Boucherie, J. (2016). Energy-efficient data collection in wireless sensor networks with time constraints. Performance Evaluation, 102, 34–52.CrossRef Mitici, M. A., Goseling, J., de Graaf, M., & Boucherie, J. (2016). Energy-efficient data collection in wireless sensor networks with time constraints. Performance Evaluation, 102, 34–52.CrossRef
9.
go back to reference Li J., Zhou H.Y., Zuo D.C., Hou K.M., Xie H.P. (2014), Zhou P. Energy consumption evaluation for wireless sensor network nodes based on queuing Petri net. International Journal of Distribution of. Sensing Network, 11 Li J., Zhou H.Y., Zuo D.C., Hou K.M., Xie H.P. (2014), Zhou P. Energy consumption evaluation for wireless sensor network nodes based on queuing Petri net. International Journal of Distribution of. Sensing Network, 11
10.
go back to reference Ke J.-F., Chen W.-J., Huang D.-C. (2015). A life extend approach based on priority queue N strategy for wireless sensor network. In: Proceedings of the 11th EAI international conference on heterogeneous networking for quality, reliability, security and robustness (QSHINE), Taipei, Taiwan. 19–20 Aug 2015, pp 272–279. Ke J.-F., Chen W.-J., Huang D.-C. (2015). A life extend approach based on priority queue N strategy for wireless sensor network. In: Proceedings of the 11th EAI international conference on heterogeneous networking for quality, reliability, security and robustness (QSHINE), Taipei, Taiwan. 19–20 Aug 2015, pp 272–279.
11.
go back to reference Ghosh S., Unnikrishnan S. (2017). Reduced power consumption in wireless sensor networks using queue-based approach. In: Proceedings of the 5th IEEE international conference on advances in computing, communication and control (ICAC3); Mumbai, India. 1–2 Dec 2017 Ghosh S., Unnikrishnan S. (2017). Reduced power consumption in wireless sensor networks using queue-based approach. In: Proceedings of the 5th IEEE international conference on advances in computing, communication and control (ICAC3); Mumbai, India. 1–2 Dec 2017
12.
go back to reference Kempa, W. M. (2019). Analytical model of a wireless sensor network (WSN) node operation with a modified threshold-type energy saving mechanism. Sensors, 19(14), 3114.CrossRef Kempa, W. M. (2019). Analytical model of a wireless sensor network (WSN) node operation with a modified threshold-type energy saving mechanism. Sensors, 19(14), 3114.CrossRef
13.
go back to reference Y-H. Chen, B. Ng, W.K.G. Seah, A-C. Pang (2016), Modeling and analysis: energy harvesting in the internet of things. In: Proceedings of the 19th international conference on modeling, analysis and simulation of wireless and mobile systems, pp 156–165 Y-H. Chen, B. Ng, W.K.G. Seah, A-C. Pang (2016), Modeling and analysis: energy harvesting in the internet of things. In: Proceedings of the 19th international conference on modeling, analysis and simulation of wireless and mobile systems, pp 156–165
14.
go back to reference Cuypere, E., De Turck, K., & Fiems, D. (2018). A queueing model of an energy harvesting sensor node with data buffering. Telecommunication Systems, 67, 281–295.CrossRef Cuypere, E., De Turck, K., & Fiems, D. (2018). A queueing model of an energy harvesting sensor node with data buffering. Telecommunication Systems, 67, 281–295.CrossRef
15.
go back to reference A. Seyedi, B. Sikdar (2008), Modeling and analysis of energy harvesting nodes in wireless sensor networks. In: Proceedings of the 2008 46th annual allerton conference on communication, control, and computing, Urbana-Champaign, IL A. Seyedi, B. Sikdar (2008), Modeling and analysis of energy harvesting nodes in wireless sensor networks. In: Proceedings of the 2008 46th annual allerton conference on communication, control, and computing, Urbana-Champaign, IL
16.
go back to reference Jornet, J. S., & Akyildiz, I. F. (2012). Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the Terahertz Band. IEEE Transactions on Nanotechnology, 11, 570–580.CrossRef Jornet, J. S., & Akyildiz, I. F. (2012). Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the Terahertz Band. IEEE Transactions on Nanotechnology, 11, 570–580.CrossRef
17.
go back to reference P.-J. Courtois (1980), The M/G/1 finite capacity queue with delays. IEEE Transaction on. Communication, COM 28(2), 165–172. P.-J. Courtois (1980), The M/G/1 finite capacity queue with delays. IEEE Transaction on. Communication, COM 28(2), 165–172.
18.
go back to reference Lee, T. T. (1984). M/G/1/N queue with vacation time and exhaustive service discipline. Operations Research, 32(4), 774–784.CrossRef Lee, T. T. (1984). M/G/1/N queue with vacation time and exhaustive service discipline. Operations Research, 32(4), 774–784.CrossRef
19.
go back to reference Frey, A., & Takahashi, Y. (1998). An explicit solution for an M/GI/1/N queue with vacation time and exhaustive service discipline. Journal of the Operations Research Society of Japan, 41(3), 95–100.CrossRef Frey, A., & Takahashi, Y. (1998). An explicit solution for an M/GI/1/N queue with vacation time and exhaustive service discipline. Journal of the Operations Research Society of Japan, 41(3), 95–100.CrossRef
20.
go back to reference Blondia, C. (1989). A finite capacity multi-queueing system with priorities and with repeated server vacations. Queueing Systems, 5(4), 313–330.CrossRef Blondia, C. (1989). A finite capacity multi-queueing system with priorities and with repeated server vacations. Queueing Systems, 5(4), 313–330.CrossRef
21.
go back to reference Blondia, C. (1991). Finite capacity vacation models with non-renewal input. Journal of Applied Probability, 28, 174–197.CrossRef Blondia, C. (1991). Finite capacity vacation models with non-renewal input. Journal of Applied Probability, 28, 174–197.CrossRef
22.
go back to reference Mahabhashyam, S. R., & Gautam, N. (2005). On queues with Markov modulated service rates. Queueing Systems, 51, 89–113.CrossRef Mahabhashyam, S. R., & Gautam, N. (2005). On queues with Markov modulated service rates. Queueing Systems, 51, 89–113.CrossRef
23.
go back to reference Horvath, G., Saffer, Z., & Telek, M. (2017). Queue length analysis of a markov-modulated vacation queue with dependent arrival and service processes and exhaustive service policy. Journal of Industrial and Management Optimization, 13(3), 1365–1381.CrossRef Horvath, G., Saffer, Z., & Telek, M. (2017). Queue length analysis of a markov-modulated vacation queue with dependent arrival and service processes and exhaustive service policy. Journal of Industrial and Management Optimization, 13(3), 1365–1381.CrossRef
24.
go back to reference Abhishek, M. A. A., Boon, O. J., & Boxma, R.-Q. (2017). A single-server queue with batch arrivals and semi-Markov services. Queueing Systems, 86, 217–240.CrossRef Abhishek, M. A. A., Boon, O. J., & Boxma, R.-Q. (2017). A single-server queue with batch arrivals and semi-Markov services. Queueing Systems, 86, 217–240.CrossRef
Metadata
Title
A queueing model for a wireless sensor node using energy harvesting
Author
Chris Blondia
Publication date
11-02-2021
Publisher
Springer US
Published in
Telecommunication Systems / Issue 2/2021
Print ISSN: 1018-4864
Electronic ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-021-00758-1

Other articles of this Issue 2/2021

Telecommunication Systems 2/2021 Go to the issue