Skip to main content
Top
Published in: Wireless Personal Communications 4/2023

03-11-2022

A Random Waypoint Model for Route Avoidance with Zone Routing Protocol in Wireless Sensor Network

Authors: P. Vijayalakshmi, K. Selvi, K. Gowsic

Published in: Wireless Personal Communications | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An innovative technique to lower path mistakes is suggested in this research. The method increases network throughput in the following ways: packets are successfully transmitted from source node to destination node without packet loss. In the network, packets cannot be misrouted due to guaranteed QoS routing services. Under two conditions, the suggested strategy is effective. The steps are the flow control step and the QoS routing step. The topology of WSNs is constantly changing. The use of fast time instances results in paths between source and destination nodes being structured. The relevant link's packet flow is therefore controlled during the flow control phase. The goal node is attained. To increase randomization, flow control steps are skillfully created. Three metrics are employed by the RWM (Waypoint Mobility) model to stop packet transmission going the incorrect way. Packets are redirected around the proper path in the second step. Using the adaptive QoS routing protocol, an erroneous route was provided. Throughput benefits from this. Using three metrics, accurately identify pathways. This graph compares network lifetime (346 s), latency, and throughput (98.595 kbps) (0.922 s). The throughput level is higher when compared to the existing QoS routing techniques, according to our analysis. Reduce the total amount of packets that are misrouted across the network.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Carbajo, R. S., Carbajo, E. S., Basu, B., & Mc Goldrick, C. (2017). Routing in wireless sensor networks for wind turbine monitoring. Pervasive and Mobile Computing, 39, 1–35.CrossRef Carbajo, R. S., Carbajo, E. S., Basu, B., & Mc Goldrick, C. (2017). Routing in wireless sensor networks for wind turbine monitoring. Pervasive and Mobile Computing, 39, 1–35.CrossRef
2.
go back to reference Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRef Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRef
3.
go back to reference Gungor, V. C., Lu, B., & Hancke, G. P. (2010). Opportunities and challenges of wireless sensor networks in smart grid. IEEE Transactions on Industrial Electronics, 57(10), 3557–3564.CrossRef Gungor, V. C., Lu, B., & Hancke, G. P. (2010). Opportunities and challenges of wireless sensor networks in smart grid. IEEE Transactions on Industrial Electronics, 57(10), 3557–3564.CrossRef
4.
go back to reference Corke, P., Wark, T., Jurdak, R., Hu, W., Valencia, P., & Moore, D. (2010). Environmental wireless sensor networks. Proceedings of the IEEE, 98(11), 1903–1917.CrossRef Corke, P., Wark, T., Jurdak, R., Hu, W., Valencia, P., & Moore, D. (2010). Environmental wireless sensor networks. Proceedings of the IEEE, 98(11), 1903–1917.CrossRef
5.
go back to reference Liu, Y., Dong, M., Ota, K., & Liu, A. (2016). Active trust: Secure and trustable routing in wireless sensor networks. IEEE Transactions on Information Forensics and Security, 11(9), 2013–2027.CrossRef Liu, Y., Dong, M., Ota, K., & Liu, A. (2016). Active trust: Secure and trustable routing in wireless sensor networks. IEEE Transactions on Information Forensics and Security, 11(9), 2013–2027.CrossRef
6.
go back to reference Anisi, M. H., Abdul-Salaam, G., Idris, M. Y. I., Wahab, A. W. A., & Ahmedy, I. (2017). Energy harvesting and battery power based routing in wireless sensor networks. Wireless Networks, 23(1), 249–266.CrossRef Anisi, M. H., Abdul-Salaam, G., Idris, M. Y. I., Wahab, A. W. A., & Ahmedy, I. (2017). Energy harvesting and battery power based routing in wireless sensor networks. Wireless Networks, 23(1), 249–266.CrossRef
7.
go back to reference Han, G., Xu, H., Duong, T. Q., Jiang, J., & Hara, T. (2013). Localization algorithms of wireless sensor networks: A survey. Telecommunication Systems, 52(4), 2419–2436.CrossRef Han, G., Xu, H., Duong, T. Q., Jiang, J., & Hara, T. (2013). Localization algorithms of wireless sensor networks: A survey. Telecommunication Systems, 52(4), 2419–2436.CrossRef
8.
go back to reference Liu, Y., He, Y., Li, M., Wang, J., Liu, K., & Li, X. (2012). Does wireless sensor network scale? A measurement study on GreenOrbs. IEEE Transactions on Parallel and Distributed Systems, 24(10), 1983–1993.CrossRef Liu, Y., He, Y., Li, M., Wang, J., Liu, K., & Li, X. (2012). Does wireless sensor network scale? A measurement study on GreenOrbs. IEEE Transactions on Parallel and Distributed Systems, 24(10), 1983–1993.CrossRef
9.
go back to reference Xie, S., & Wang, Y. (2014). Construction of tree network with limited delivery latency in homogeneous wireless sensor networks. Wireless Personal Communications, 78(1), 231–246.CrossRef Xie, S., & Wang, Y. (2014). Construction of tree network with limited delivery latency in homogeneous wireless sensor networks. Wireless Personal Communications, 78(1), 231–246.CrossRef
10.
go back to reference Singh, S. K., Singh, M. P., & Singh, D. K. (2010). A survey of energy-efficient hierarchical cluster-based routing in wireless sensor networks. International Journal of Advanced Networking and Application (IJANA), 2(02), 570–580. Singh, S. K., Singh, M. P., & Singh, D. K. (2010). A survey of energy-efficient hierarchical cluster-based routing in wireless sensor networks. International Journal of Advanced Networking and Application (IJANA), 2(02), 570–580.
11.
go back to reference Lakshmi, N. S. R., Babu, S., & Bhalaji, N. (2017). Analysis of clustered QoS routing protocol for distributed wireless sensor network. Computers & Electrical Engineering, 64, 173–181.CrossRef Lakshmi, N. S. R., Babu, S., & Bhalaji, N. (2017). Analysis of clustered QoS routing protocol for distributed wireless sensor network. Computers & Electrical Engineering, 64, 173–181.CrossRef
12.
go back to reference Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.CrossRef Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.CrossRef
13.
go back to reference Ramson, S. J., & Moni, D. J. (2017). Applications of wireless sensor networks—A survey. In innovations in electrical, electronics, instrumentation and media technology (ICEEIMT), 2017 international conference on (pp. 325–329). IEEE. Ramson, S. J., & Moni, D. J. (2017). Applications of wireless sensor networks—A survey. In innovations in electrical, electronics, instrumentation and media technology (ICEEIMT), 2017 international conference on (pp. 325–329). IEEE.
14.
go back to reference Nguyen, M. T., & Teague, K. A. (2017). Compressive sensing based random walk routing in wireless sensor networks. Ad Hoc Networks, 54, 99–110.CrossRef Nguyen, M. T., & Teague, K. A. (2017). Compressive sensing based random walk routing in wireless sensor networks. Ad Hoc Networks, 54, 99–110.CrossRef
15.
go back to reference Jiang, J., Han, G., Guo, H., Shu, L., & Rodrigues, J. J. (2016). Geographic multipath routing based on geospatial division in duty-cycled underwater wireless sensor networks. Journal of Network and Computer Applications, 59, 4–13.CrossRef Jiang, J., Han, G., Guo, H., Shu, L., & Rodrigues, J. J. (2016). Geographic multipath routing based on geospatial division in duty-cycled underwater wireless sensor networks. Journal of Network and Computer Applications, 59, 4–13.CrossRef
16.
go back to reference Rehan, W., Fischer, S., Rehan, M., & Rehmani, M. H. (2017). A comprehensive survey on multichannel routing in wireless sensor networks. Journal of Network and Computer Applications, 95, 1–25.CrossRef Rehan, W., Fischer, S., Rehan, M., & Rehmani, M. H. (2017). A comprehensive survey on multichannel routing in wireless sensor networks. Journal of Network and Computer Applications, 95, 1–25.CrossRef
17.
go back to reference Elappila, M., Chinara, S., & Parhi, D. R. (2018). Survivable path routing in WSN for IoT applications. Pervasive and Mobile Computing, 43, 49–63.CrossRef Elappila, M., Chinara, S., & Parhi, D. R. (2018). Survivable path routing in WSN for IoT applications. Pervasive and Mobile Computing, 43, 49–63.CrossRef
18.
go back to reference Mann, P. S., & Singh, S. (2017). Energy-efficient hierarchical routing for wireless sensor networks: A swarm intelligence approach. Wireless Personal Communications, 92(2), 785–805.CrossRef Mann, P. S., & Singh, S. (2017). Energy-efficient hierarchical routing for wireless sensor networks: A swarm intelligence approach. Wireless Personal Communications, 92(2), 785–805.CrossRef
19.
go back to reference Huynh, T. T., Dinh-Duc, A. V., & Tran, C. H. (2016). Delay-constrained energy-efficient cluster-based multi-hop routing in wireless sensor networks. Journal of Communications and Networks, 18(4), 580–588.CrossRef Huynh, T. T., Dinh-Duc, A. V., & Tran, C. H. (2016). Delay-constrained energy-efficient cluster-based multi-hop routing in wireless sensor networks. Journal of Communications and Networks, 18(4), 580–588.CrossRef
20.
go back to reference Mostafaei, H. (2018). Energy-efficient algorithm for reliable routing of wireless sensor networks. IEEE Transactions on Industrial Electronics, 66(7), 5567–5575.CrossRef Mostafaei, H. (2018). Energy-efficient algorithm for reliable routing of wireless sensor networks. IEEE Transactions on Industrial Electronics, 66(7), 5567–5575.CrossRef
21.
go back to reference Mohajerani, A., & Gharavian, D. (2016). An ant colony optimization based routing algorithm for extending network lifetime in wireless sensor networks. Wireless Networks, 22(8), 2637–2647.CrossRef Mohajerani, A., & Gharavian, D. (2016). An ant colony optimization based routing algorithm for extending network lifetime in wireless sensor networks. Wireless Networks, 22(8), 2637–2647.CrossRef
22.
go back to reference Sarkar, A., & Murugan, T. S. (2019). Cluster head selection for energy efficient and delay-less routing in wireless sensor network. Wireless Networks, 25(1), 303–320.CrossRef Sarkar, A., & Murugan, T. S. (2019). Cluster head selection for energy efficient and delay-less routing in wireless sensor network. Wireless Networks, 25(1), 303–320.CrossRef
23.
go back to reference Liu, J., Shen, H., Yu, L., Narman, H. S., Zhai, J., Hallstrom, J. O., & He, Y. (2017). Characterizing data deliverability of greedy routing in wireless sensor networks. IEEE Transactions on Mobile Computing, 17(3), 543–559.CrossRef Liu, J., Shen, H., Yu, L., Narman, H. S., Zhai, J., Hallstrom, J. O., & He, Y. (2017). Characterizing data deliverability of greedy routing in wireless sensor networks. IEEE Transactions on Mobile Computing, 17(3), 543–559.CrossRef
24.
go back to reference Senouci, M. R., Mellouk, A., Senouci, H., & Aissani, A. (2012). Performance evaluation of network lifetime spatial-temporal distribution for WSN routing protocols. Journal of Network and Computer Applications, 35(4), 1317–1328.CrossRef Senouci, M. R., Mellouk, A., Senouci, H., & Aissani, A. (2012). Performance evaluation of network lifetime spatial-temporal distribution for WSN routing protocols. Journal of Network and Computer Applications, 35(4), 1317–1328.CrossRef
25.
go back to reference Al-Ariki, H. D. E., & Swamy, M. S. (2017). A survey and analysis of multipath routing protocols in wireless multimedia sensor networks. Wireless Networks, 23(6), 1823–1835.CrossRef Al-Ariki, H. D. E., & Swamy, M. S. (2017). A survey and analysis of multipath routing protocols in wireless multimedia sensor networks. Wireless Networks, 23(6), 1823–1835.CrossRef
26.
go back to reference Zhang, D. G., Zheng, K., Zhang, T., & Wang, X. (2015). A novel multicast routing method with minimum transmission for WSN of cloud computing service. Soft Computing, 19(7), 1817–1827.CrossRef Zhang, D. G., Zheng, K., Zhang, T., & Wang, X. (2015). A novel multicast routing method with minimum transmission for WSN of cloud computing service. Soft Computing, 19(7), 1817–1827.CrossRef
27.
go back to reference Dehwah, A. H., Shamma, J. S., & Claudel, C. G. (2017). A distributed routing scheme for energy management in solar powered sensor networks. Ad Hoc Networks, 67, 11–23.CrossRef Dehwah, A. H., Shamma, J. S., & Claudel, C. G. (2017). A distributed routing scheme for energy management in solar powered sensor networks. Ad Hoc Networks, 67, 11–23.CrossRef
28.
go back to reference Singh, S. P., & Sharma, S. C. (2015). A survey on cluster based routing protocols in wireless sensor networks. Procedia Computer Science, 45, 687–695.CrossRef Singh, S. P., & Sharma, S. C. (2015). A survey on cluster based routing protocols in wireless sensor networks. Procedia Computer Science, 45, 687–695.CrossRef
29.
go back to reference Venkateswarulu, B., Subbu, N., & Ramamurthy, S. (2019). An efficient routing protocol based on polar tracing function for underwater wireless sensor networks for mobility health monitoring system application. Journal of Medical Systems, 43(7), 218.CrossRef Venkateswarulu, B., Subbu, N., & Ramamurthy, S. (2019). An efficient routing protocol based on polar tracing function for underwater wireless sensor networks for mobility health monitoring system application. Journal of Medical Systems, 43(7), 218.CrossRef
30.
go back to reference Manikandan, A., & Rajarajachozhan, C. (2017). Artificial Bee Colony for Socially Aware Networking. Journal of Chemical and Pharmaceutical Sciences, 2, 299–301.CrossRef Manikandan, A., & Rajarajachozhan, C. (2017). Artificial Bee Colony for Socially Aware Networking. Journal of Chemical and Pharmaceutical Sciences, 2, 299–301.CrossRef
31.
go back to reference Faheem, M., & Gungor, V. C. (2018). Energy efficient and QoS-aware routing protocol for wireless sensor network-based smart grid applications in the context of industry 4.0. Applied Soft Computing, 68, 910–922.CrossRef Faheem, M., & Gungor, V. C. (2018). Energy efficient and QoS-aware routing protocol for wireless sensor network-based smart grid applications in the context of industry 4.0. Applied Soft Computing, 68, 910–922.CrossRef
32.
go back to reference Lin, C., Wang, K., & Deng, G. (2017). A QoS-aware routing in SDN hybrid networks. Procedia Computer Science, 110, 242–249.CrossRef Lin, C., Wang, K., & Deng, G. (2017). A QoS-aware routing in SDN hybrid networks. Procedia Computer Science, 110, 242–249.CrossRef
33.
go back to reference Han, G., Zhou, L., Wang, H., Zhang, W., & Chan, S. (2018). A source location protection protocol based on dynamic routing in WSNs for the social internet of things. Future Generation Computer Systems, 82, 689–697.CrossRef Han, G., Zhou, L., Wang, H., Zhang, W., & Chan, S. (2018). A source location protection protocol based on dynamic routing in WSNs for the social internet of things. Future Generation Computer Systems, 82, 689–697.CrossRef
34.
go back to reference Qu, D., Wang, X., Huang, M., Li, K., Das, S. K., & Wu, S. (2018). A cache-aware social-based QoS routing scheme in information centric networks. Journal of Network and Computer Applications, 121, 20–32.CrossRef Qu, D., Wang, X., Huang, M., Li, K., Das, S. K., & Wu, S. (2018). A cache-aware social-based QoS routing scheme in information centric networks. Journal of Network and Computer Applications, 121, 20–32.CrossRef
35.
go back to reference Ikram, W., Petersen, S., Orten, P., & Thornhill, N. F. (2014). Adaptive multi-channel transmission power control for industrial wireless instrumentation. IEEE Transactions on Industrial Informatics, 10(2), 978–990.CrossRef Ikram, W., Petersen, S., Orten, P., & Thornhill, N. F. (2014). Adaptive multi-channel transmission power control for industrial wireless instrumentation. IEEE Transactions on Industrial Informatics, 10(2), 978–990.CrossRef
36.
go back to reference Huang, H., Yin, H., Min, G., Zhang, X., Zhu, W., & Wu, Y. (2017). Coordinate-assisted routing approach to bypass routing holes in wireless sensor networks. IEEE Communications Magazine, 55(7), 180–185.CrossRef Huang, H., Yin, H., Min, G., Zhang, X., Zhu, W., & Wu, Y. (2017). Coordinate-assisted routing approach to bypass routing holes in wireless sensor networks. IEEE Communications Magazine, 55(7), 180–185.CrossRef
37.
go back to reference Wang, T., & Low, C. P. (2013). Evaluating inter-arrival time in general random waypoint mobility model. Ad Hoc Networks, 11(1), 124–137.CrossRef Wang, T., & Low, C. P. (2013). Evaluating inter-arrival time in general random waypoint mobility model. Ad Hoc Networks, 11(1), 124–137.CrossRef
38.
go back to reference Wang, T., & Low, C. P. (2010). A fully distributed node allocation scheme with partition protection for Mobile Ad Hoc Networks. Computer Communications, 33(16), 1949–1960.CrossRef Wang, T., & Low, C. P. (2010). A fully distributed node allocation scheme with partition protection for Mobile Ad Hoc Networks. Computer Communications, 33(16), 1949–1960.CrossRef
39.
go back to reference Silva, R. T., Colletti, R. R., Pimentel, C., & de Moraes, R. M. (2016). BETA random waypoint mobility model for wireless network simulation. Ad Hoc Networks, 48, 93–100.CrossRef Silva, R. T., Colletti, R. R., Pimentel, C., & de Moraes, R. M. (2016). BETA random waypoint mobility model for wireless network simulation. Ad Hoc Networks, 48, 93–100.CrossRef
40.
go back to reference Huang, J., Hong, Y., Zhao, Z., & Yuan, Y. (2017). An energy-efficient multi-hop routing protocol based on grid clustering for wireless sensor networks. Cluster Computing, 20(4), 3071–3083.CrossRef Huang, J., Hong, Y., Zhao, Z., & Yuan, Y. (2017). An energy-efficient multi-hop routing protocol based on grid clustering for wireless sensor networks. Cluster Computing, 20(4), 3071–3083.CrossRef
41.
go back to reference Manikandan, A., & Pradeep, S. (2017c). Quantitative Analysis of Network Arrangement in Randomized Appropriation in WSN. Journal of Chemical and Pharmaceutical Sciences, 1, 181–184 Manikandan, A., & Pradeep, S. (2017c). Quantitative Analysis of Network Arrangement in Randomized Appropriation in WSN. Journal of Chemical and Pharmaceutical Sciences, 1, 181–184
42.
go back to reference Yang, X., Chen, Q., Chen, C., & Zhao, J. (2018). Improved ZRP routing protocol based on clustering. Procedia Computer Science, 131, 992–1000.CrossRef Yang, X., Chen, Q., Chen, C., & Zhao, J. (2018). Improved ZRP routing protocol based on clustering. Procedia Computer Science, 131, 992–1000.CrossRef
43.
go back to reference Sivaram, M., Mohammed, A. S., Yuvaraj, D., Porkodi, V., Manikandan, V., & Yuvaraj, N. (2019). Advanced expert system using particle swarm optimization based adaptive network based fuzzy inference system to diagnose the physical constitution of human body. In: international conference on emerging technologies in computer engineering (pp. 349–362). Springer, Singapore. Sivaram, M., Mohammed, A. S., Yuvaraj, D., Porkodi, V., Manikandan, V., & Yuvaraj, N. (2019). Advanced expert system using particle swarm optimization based adaptive network based fuzzy inference system to diagnose the physical constitution of human body. In: international conference on emerging technologies in computer engineering (pp. 349–362). Springer, Singapore.
44.
go back to reference Sivaram, M., Porkodi, V., Mohammed, A. S., Manikandan, V., & Yuvaraj, N. (2019). Retransmission DBTMA protocol with fast retransmission strategy to improve the performance of MANETs. IEEE Access, 7, 85098–85109.CrossRef Sivaram, M., Porkodi, V., Mohammed, A. S., Manikandan, V., & Yuvaraj, N. (2019). Retransmission DBTMA protocol with fast retransmission strategy to improve the performance of MANETs. IEEE Access, 7, 85098–85109.CrossRef
45.
go back to reference Venkataramanan, C. & Ramalingam, S. & Manikandan, A.. (2021). LWBA: Lévy-walk bat algorithm based data prediction for precision agriculture in wireless sensor networks. Journal of Intelligent & Fuzzy Systems, 41, 2891-2904. 10.3233/JIFS-202953 Venkataramanan, C. & Ramalingam, S. & Manikandan, A.. (2021). LWBA: Lévy-walk bat algorithm based data prediction for precision agriculture in wireless sensor networks. Journal of Intelligent & Fuzzy Systems, 41, 2891-2904. 10.3233/JIFS-202953
46.
Metadata
Title
A Random Waypoint Model for Route Avoidance with Zone Routing Protocol in Wireless Sensor Network
Authors
P. Vijayalakshmi
K. Selvi
K. Gowsic
Publication date
03-11-2022
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2023
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-10062-z

Other articles of this Issue 4/2023

Wireless Personal Communications 4/2023 Go to the issue