Skip to main content
Top

2024 | OriginalPaper | Chapter

A Randomised Lattice Rule Algorithm with Pre-determined Generating Vector and Random Number of Points for Korobov Spaces with \(0 < \alpha \le 1/2\)

Authors : Dirk Nuyens, Laurence Wilkes

Published in: Monte Carlo and Quasi-Monte Carlo Methods

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In previous work [12], we showed that a lattice rule with a pre-determined generating vector but random number of points can achieve the near optimal convergence of \(O(n^{-\alpha -1/2+\epsilon })\), \(\epsilon > 0\), for the worst case expected error, commonly referred to as the randomised error, for numerical integration of high-dimensional functions in the Korobov space with smoothness \(\alpha > 1/2\). Compared to the optimal deterministic rate of \(O(n^{-\alpha +\epsilon })\), \(\epsilon > 0\), such a randomised algorithm is capable of an extra half in the rate of convergence. In this paper, we show that a pre-determined generating vector also exists in the case of \(0 < \alpha \le 1/2\). Also here we obtain the near optimal convergence of \(O(n^{-\alpha -1/2+\epsilon })\), \(\epsilon > 0\); or in more detail, we obtain \(O(\sqrt{r} \, n^{-\alpha -1/2+1/(2r)+\epsilon '})\) which holds for any choices of \(\epsilon ' > 0\) and \(r \in {\mathbb {N}}\) with \(r > 1/(2\alpha )\).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bakhvalov, N.S.: An estimate of the mean remainder term in quadrature formulae. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 1, 64–77 (1961) Bakhvalov, N.S.: An estimate of the mean remainder term in quadrature formulae. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 1, 64–77 (1961)
2.
go back to reference Berend, D., Tassa, T.: Improved bounds on Bell numbers and on moments of sums of random variables. Probab. Math. Stat. 30(2), 185–205 (2010)MathSciNet Berend, D., Tassa, T.: Improved bounds on Bell numbers and on moments of sums of random variables. Probab. Math. Stat. 30(2), 185–205 (2010)MathSciNet
3.
go back to reference de La Vallée Poussin, C.J.: Recherches analytiques sur la théorie des nombres premiers. Première partie. La fonction \(\zeta (s)\) de Riemann et les nombres premiers en général, suivi d’un appendice sur des réflexions applicables à une formule donnée par Riemann. Ann. Soc. Scient. Bruxelles, deuxième partie 20, 183–256 (1896) de La Vallée Poussin, C.J.: Recherches analytiques sur la théorie des nombres premiers. Première partie. La fonction \(\zeta (s)\) de Riemann et les nombres premiers en général, suivi d’un appendice sur des réflexions applicables à une formule donnée par Riemann. Ann. Soc. Scient. Bruxelles, deuxième partie 20, 183–256 (1896)
4.
go back to reference de La Vallée Poussin, C.J.: Sur la fonction \(\zeta (s)\) de Riemann et le nombre des nombres premiers inférieurs à une limite donnée. Mémoires couronnés et autres Mémoires in-8 publiés par l’Académie royale de Belgique 49, 74 (1899) de La Vallée Poussin, C.J.: Sur la fonction \(\zeta (s)\) de Riemann et le nombre des nombres premiers inférieurs à une limite donnée. Mémoires couronnés et autres Mémoires in-8 publiés par l’Académie royale de Belgique 49, 74 (1899)
5.
go back to reference Dick, J.: Higher order scrambled digital nets achieve the optimal rate of the root mean square error for smooth integrands. Ann. Stat. 39(3), 1372–1398 (2011)MathSciNetCrossRef Dick, J.: Higher order scrambled digital nets achieve the optimal rate of the root mean square error for smooth integrands. Ann. Stat. 39(3), 1372–1398 (2011)MathSciNetCrossRef
6.
go back to reference Dick, J., Goda, T., Suzuki, K.: Component-by-component construction of randomized rank-1 lattice rules achieving almost the optimal randomized error rate. Math. Comp. 91, 2771–2801 (2022) Dick, J., Goda, T., Suzuki, K.: Component-by-component construction of randomized rank-1 lattice rules achieving almost the optimal randomized error rate. Math. Comp. 91, 2771–2801 (2022)
7.
go back to reference Dick, J., Kritzer, P., Pillichshammer, F.: Lattice Rules: Numerical Integration, Approximation, and Discrepancy. Springer International Publishing (2022) Dick, J., Kritzer, P., Pillichshammer, F.: Lattice Rules: Numerical Integration, Approximation, and Discrepancy. Springer International Publishing (2022)
8.
go back to reference Frolov, K.K.: Upper error bounds for quadrature formulas on function classes. Dokl. Akad. Nauk SSSR 231(4), 818–821 (1976)MathSciNet Frolov, K.K.: Upper error bounds for quadrature formulas on function classes. Dokl. Akad. Nauk SSSR 231(4), 818–821 (1976)MathSciNet
9.
go back to reference Goda, T., L’Ecuyer, P.: Construction-free median quasi-Monte Carlo rules for function spaces with unspecified smoothness and general weights. SIAM J. Sci. Comput. 44(4), A2765–A2788 (2022)MathSciNetCrossRef Goda, T., L’Ecuyer, P.: Construction-free median quasi-Monte Carlo rules for function spaces with unspecified smoothness and general weights. SIAM J. Sci. Comput. 44(4), A2765–A2788 (2022)MathSciNetCrossRef
10.
go back to reference Krieg, D., Novak, E.: A universal algorithm for multivariate integration. Found. Comput. Math. 17, 895–916 (2017)MathSciNetCrossRef Krieg, D., Novak, E.: A universal algorithm for multivariate integration. Found. Comput. Math. 17, 895–916 (2017)MathSciNetCrossRef
11.
go back to reference Kritzer, P., Kuo, F.Y., Nuyens, D., Ullrich, M.: Lattice rules with random \(n\) achieve nearly the optimal \({\cal{O}}(n^{-\alpha -1/2})\) error independently of the dimension. J. Approx. Theory 240, 96–113 (2019) Kritzer, P., Kuo, F.Y., Nuyens, D., Ullrich, M.: Lattice rules with random \(n\) achieve nearly the optimal \({\cal{O}}(n^{-\alpha -1/2})\) error independently of the dimension. J. Approx. Theory 240, 96–113 (2019)
13.
go back to reference Mariconda, C., Tonolo, A.: Discrete Calculus: Methods for Counting. Springer International Publishing (2016) Mariconda, C., Tonolo, A.: Discrete Calculus: Methods for Counting. Springer International Publishing (2016)
14.
go back to reference Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. Society for Industrial and Applied Mathematics (1992) Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. Society for Industrial and Applied Mathematics (1992)
15.
go back to reference Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems: Volume I: Linear information. EMS Tracts in Mathematics. European Mathematical Society (2008) Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems: Volume I: Linear information. EMS Tracts in Mathematics. European Mathematical Society (2008)
16.
go back to reference Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems: Volume II: Standard Information for Functionals. EMS Tracts in Mathematics. European Mathematical Society (2010) Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems: Volume II: Standard Information for Functionals. EMS Tracts in Mathematics. European Mathematical Society (2010)
17.
go back to reference Nuyens, D.: The Construction of Good Lattice Rules and Polynomial Lattice Rules, pp. 223–256. De Gruyter, Berlin, Boston (2014) Nuyens, D.: The Construction of Good Lattice Rules and Polynomial Lattice Rules, pp. 223–256. De Gruyter, Berlin, Boston (2014)
18.
go back to reference Nuyens, D., Suzuki, Y.: Scaled lattice rules for integration on \(\mathbb{R} ^d\) achieving higher-order convergence with error analysis in terms of orthogonal projections onto periodic spaces. Math. Comp. 92, 307–347 (2023) Nuyens, D., Suzuki, Y.: Scaled lattice rules for integration on \(\mathbb{R} ^d\) achieving higher-order convergence with error analysis in terms of orthogonal projections onto periodic spaces. Math. Comp. 92, 307–347 (2023)
19.
go back to reference Owen, A.B.: Randomly permuted \((t,m,s)\)-nets and \((t, s)\)-sequences. In: Niederreiter, H., Shiue, P.J.S.: (eds.) Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, pp. 299–317. Springer, New York, NY (1995) Owen, A.B.: Randomly permuted \((t,m,s)\)-nets and \((t, s)\)-sequences. In: Niederreiter, H., Shiue, P.J.S.: (eds.) Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, pp. 299–317. Springer, New York, NY (1995)
20.
21.
go back to reference Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford University Press (1994) Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford University Press (1994)
22.
go back to reference Sloan, I.H., Kuo, F.Y., Joe, S.: On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces. Math. Comp. 71, 1609–1640 (2002) Sloan, I.H., Kuo, F.Y., Joe, S.: On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces. Math. Comp. 71, 1609–1640 (2002)
23.
go back to reference Sloan, I.H., Woźniakowski, H.: When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? J. Complexity 14(1), 1–33 (1998) Sloan, I.H., Woźniakowski, H.: When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? J. Complexity 14(1), 1–33 (1998)
24.
go back to reference Sloan, I.H., Woźniakowski, H.: Tractability of multivariate integration for weighted Korobov classes. J. Complexity 17(4), 697–721 (2001) Sloan, I.H., Woźniakowski, H.: Tractability of multivariate integration for weighted Korobov classes. J. Complexity 17(4), 697–721 (2001)
25.
go back to reference Ullrich, M.: A Monte Carlo method for integration of multivariate smooth functions. SIAM J. Numer. Anal. 55, 1188–1200 (2017)MathSciNetCrossRef Ullrich, M.: A Monte Carlo method for integration of multivariate smooth functions. SIAM J. Numer. Anal. 55, 1188–1200 (2017)MathSciNetCrossRef
Metadata
Title
A Randomised Lattice Rule Algorithm with Pre-determined Generating Vector and Random Number of Points for Korobov Spaces with 
Authors
Dirk Nuyens
Laurence Wilkes
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-59762-6_25

Premium Partner