Skip to main content
Top
Published in: Topics in Catalysis 18-19/2018

04-06-2018 | Original Paper

A Rational Revisiting of Niobium Oxophosphate Catalysts for Carbohydrate Biomass Reactions

Authors: Sebastiano Campisi, Simona Bennici, Aline Auroux, Paolo Carniti, Antonella Gervasini

Published in: Topics in Catalysis | Issue 18-19/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Niobium oxophosphate acid catalyst (NbP) has great success in aqueous heterogeneous catalysis, in particular for carbohydrate biomass valorization, thanks to the water-tolerant acid properties of the LA (Lewis) and BA (Brønsted) sites. Attempts to tailor the acid properties of NbP by chemical treatment or dilution in inert matrix to disperse active NbP phase have been recently proposed in the literature (Carniti et al., Appl Catal B 193:93–102, 2016; Aronne et al., J Phys Chem C 121:17378–17389, 2017). The obtained samples have been used with success in the hydrolysis reaction of inulin to fructose and in hydrolysis plus dehydration of cellobiose to HMF. The samples have been further studied with calorimetric acid-titration measurements using 2-phenylethylamine (PEA) basic probe in various liquids (cyclohexane, water, isopropanol, and water-isopropanol mixtures) to study their intrinsic and effective acid strength. A rational revisiting of the surface acid properties of NbP and modified samples, that wants to take into account the acid-sites density and strength and the LAS to BAS ratios measured under different liquid environments in relation with their catalytic activity, is presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gupta P, Paul S (2014) Solid acids: green alternatives for acid catalysis. Catal Today 236:153–170CrossRef Gupta P, Paul S (2014) Solid acids: green alternatives for acid catalysis. Catal Today 236:153–170CrossRef
2.
go back to reference Busca G (2007) Acid catalysts in industrial hydrocarbon chemistry. Chem Rev 107(11):5366–5410CrossRef Busca G (2007) Acid catalysts in industrial hydrocarbon chemistry. Chem Rev 107(11):5366–5410CrossRef
3.
go back to reference Okuhara T (2002) Water-tolerant solid acid catalysts. Chem Rev 102(10):3641–3666CrossRef Okuhara T (2002) Water-tolerant solid acid catalysts. Chem Rev 102(10):3641–3666CrossRef
4.
go back to reference Román-Leshkov Y, Davis ME (2011) Activation of carbonyl-containing molecules with solid lewis acids in aqueous media. ACS Catal 1(11):1566–1580CrossRef Román-Leshkov Y, Davis ME (2011) Activation of carbonyl-containing molecules with solid lewis acids in aqueous media. ACS Catal 1(11):1566–1580CrossRef
5.
go back to reference Noma R, Nakajima K, Kamata K, Kitano M, Hayashi S, Hara M (2015) Formation of 5-(hydroxymethyl) furfural by stepwise dehydration over TiO2 with water-tolerant Lewis acid sites. J Phys Chem C 119(30):17117–17125CrossRef Noma R, Nakajima K, Kamata K, Kitano M, Hayashi S, Hara M (2015) Formation of 5-(hydroxymethyl) furfural by stepwise dehydration over TiO2 with water-tolerant Lewis acid sites. J Phys Chem C 119(30):17117–17125CrossRef
6.
go back to reference Ziolek M (2003) Niobium-containing catalysts—the state of the art. Catal Today 78:47–64CrossRef Ziolek M (2003) Niobium-containing catalysts—the state of the art. Catal Today 78:47–64CrossRef
7.
go back to reference Armaroli T, Busca G, Carlini C, Giuttari M, Raspolli Galletti AM, Sbrana G (2000) Active acid sites characterization of niobium phosphate catalysts and their activity in fructose dehydration to 5-hydroxymethyl-2-furaldehyde. J Mol Catal A 151:233–243CrossRef Armaroli T, Busca G, Carlini C, Giuttari M, Raspolli Galletti AM, Sbrana G (2000) Active acid sites characterization of niobium phosphate catalysts and their activity in fructose dehydration to 5-hydroxymethyl-2-furaldehyde. J Mol Catal A 151:233–243CrossRef
8.
go back to reference Antonetti C, Melloni M, Licursi D, Fulignati S, Ribechini E, Rivas S, Cavani F, Raspolli Galletti AM (2017) Microwave-assisted dehydration of fructose and inulin to HMF catalyzed by niobium and zirconium phosphate catalysts. Appl Catal B 206:364–377CrossRef Antonetti C, Melloni M, Licursi D, Fulignati S, Ribechini E, Rivas S, Cavani F, Raspolli Galletti AM (2017) Microwave-assisted dehydration of fructose and inulin to HMF catalyzed by niobium and zirconium phosphate catalysts. Appl Catal B 206:364–377CrossRef
9.
go back to reference Catrinck MN, Ribeiro ES, Monteiro RS, Ribas RM, Barbosa MH, Teófilo RF (2017) Direct conversion of glucose to 5-hydroxymethylfurfural using a mixture of niobic acid and niobium phosphate as a solid acid catalyst. Fuel 210:67–74CrossRef Catrinck MN, Ribeiro ES, Monteiro RS, Ribas RM, Barbosa MH, Teófilo RF (2017) Direct conversion of glucose to 5-hydroxymethylfurfural using a mixture of niobic acid and niobium phosphate as a solid acid catalyst. Fuel 210:67–74CrossRef
10.
go back to reference Nakajima K, Baba Y, Noma R, Kitano M, Kondo N, Hayashi J, S., & Hara M (2011) Nb2O5·nH2O as a heterogeneous catalyst with water-tolerant Lewis acid sites. J Am Chem Soc 133(12):4224–4227CrossRef Nakajima K, Baba Y, Noma R, Kitano M, Kondo N, Hayashi J, S., & Hara M (2011) Nb2O5·nH2O as a heterogeneous catalyst with water-tolerant Lewis acid sites. J Am Chem Soc 133(12):4224–4227CrossRef
11.
go back to reference Carniti P, Gervasini A, Bossola F, Dal Santo V (2016) Cooperative action of Brønsted and Lewis acid sites of niobium phosphate catalysts for cellobiose conversion in water. Appl Catal B 193:93–102CrossRef Carniti P, Gervasini A, Bossola F, Dal Santo V (2016) Cooperative action of Brønsted and Lewis acid sites of niobium phosphate catalysts for cellobiose conversion in water. Appl Catal B 193:93–102CrossRef
12.
go back to reference Aronne A, Di Serio M, Vitiello R, Clayden NJ, Minieri L, Imparato C, Piccolo A, Pernice P, Carniti P, Gervasini A (2017) An environmentally friendly Nb-P-Si solid catalysts for acid-demanding reactions. J Phys Chem C 121:17378–17389CrossRef Aronne A, Di Serio M, Vitiello R, Clayden NJ, Minieri L, Imparato C, Piccolo A, Pernice P, Carniti P, Gervasini A (2017) An environmentally friendly Nb-P-Si solid catalysts for acid-demanding reactions. J Phys Chem C 121:17378–17389CrossRef
13.
go back to reference Gervasini A, Carniti P, Bossola F, Imparato C, Pernice P, Clayden NJ, Aronne A (2018) New Nb-P-Si ternary oxide materials and their use in heterogeneous acid catalysis. J Mol Catal (in press) Gervasini A, Carniti P, Bossola F, Imparato C, Pernice P, Clayden NJ, Aronne A (2018) New Nb-P-Si ternary oxide materials and their use in heterogeneous acid catalysis. J Mol Catal (in press)
14.
go back to reference Clayden NJ, Accardo G, Mazzei P, Piccolo A, Pernice P, Vergara A, Ferone C, Aronne A (2015) Phosphorus stably bonded to a silica gel matrix through niobium bridges. J Mater Chem 3:15986–15995CrossRef Clayden NJ, Accardo G, Mazzei P, Piccolo A, Pernice P, Vergara A, Ferone C, Aronne A (2015) Phosphorus stably bonded to a silica gel matrix through niobium bridges. J Mater Chem 3:15986–15995CrossRef
15.
go back to reference Carniti P, Gervasini A, Biella S, Auroux A (2005) Intrinsic and effective acidity study of niobic acid and niobium phosphate by a multi-technique approach. Chem Mater 17:6128–6136CrossRef Carniti P, Gervasini A, Biella S, Auroux A (2005) Intrinsic and effective acidity study of niobic acid and niobium phosphate by a multi-technique approach. Chem Mater 17:6128–6136CrossRef
18.
go back to reference Gervasini A, Auroux A (2013) Combined use of titration calorimetry and spectrofluorimetry for the screening of the acidity of solid catalysts in different liquids. Thermochim Acta 567:8–14CrossRef Gervasini A, Auroux A (2013) Combined use of titration calorimetry and spectrofluorimetry for the screening of the acidity of solid catalysts in different liquids. Thermochim Acta 567:8–14CrossRef
19.
go back to reference Lercher JA, Gründling C, Eder-Mirth G (1996) Infrared studies of the surface acidity of oxides and zeolites using adsorbed probe molecules. Catal Today 27(3–4):353–376CrossRef Lercher JA, Gründling C, Eder-Mirth G (1996) Infrared studies of the surface acidity of oxides and zeolites using adsorbed probe molecules. Catal Today 27(3–4):353–376CrossRef
20.
go back to reference Busca G (1999) The surface acidity of solid oxides and its characterization by IR spectroscopic methods. An attempt at systematization. Phys Chem Chem Phys 1(5):723–736CrossRef Busca G (1999) The surface acidity of solid oxides and its characterization by IR spectroscopic methods. An attempt at systematization. Phys Chem Chem Phys 1(5):723–736CrossRef
21.
go back to reference Zecchina A, Lamberti C, Bordiga S (1998) Surface acidity and basicity: general concepts. Catal Today 41(1–3):169–177CrossRef Zecchina A, Lamberti C, Bordiga S (1998) Surface acidity and basicity: general concepts. Catal Today 41(1–3):169–177CrossRef
23.
go back to reference Essayem N, Holmqvist A, Gayraud PY, Vedrine JC, Taarit YB (2001) In situ FTIR studies of the protonic sites of H3PW12O40 and its acidic cesium salts MxH3– xPW12O40. J Catal 197(2):273–280CrossRef Essayem N, Holmqvist A, Gayraud PY, Vedrine JC, Taarit YB (2001) In situ FTIR studies of the protonic sites of H3PW12O40 and its acidic cesium salts MxH3– xPW12O40. J Catal 197(2):273–280CrossRef
24.
go back to reference Tamura M, Shimizu K, Satsuma A (2012) Comprehensive IR study on acid/base properties of metal oxides. Appl Catal A 433:135–145CrossRef Tamura M, Shimizu K, Satsuma A (2012) Comprehensive IR study on acid/base properties of metal oxides. Appl Catal A 433:135–145CrossRef
25.
go back to reference Emeis CA (1993) Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acids. J Catal 141:347–354CrossRef Emeis CA (1993) Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acids. J Catal 141:347–354CrossRef
26.
go back to reference Gervasini A, Carniti P, Desmedt F, Miquel P (2017) Liquid phase direct synthesis of H2O2: activity and selectivity of Pd-dispersed phase on acidic niobia-silica supports. ACS Catal 7:4741–4752CrossRef Gervasini A, Carniti P, Desmedt F, Miquel P (2017) Liquid phase direct synthesis of H2O2: activity and selectivity of Pd-dispersed phase on acidic niobia-silica supports. ACS Catal 7:4741–4752CrossRef
27.
go back to reference Gallezot P (2011) Direct routes from biomass to end-products. Catal Today 167:31–36CrossRef Gallezot P (2011) Direct routes from biomass to end-products. Catal Today 167:31–36CrossRef
28.
go back to reference Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem 16(3):950–963CrossRef Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem 16(3):950–963CrossRef
29.
go back to reference Zhang Y, Jin P, Liu L, Pan J, Yan Y, Chen Y, Xiong Q (2017) A novel route for green conversion of cellulose to HMF by cascading enzymatic and chemical reactions. AIChE J 63:4920–4932CrossRef Zhang Y, Jin P, Liu L, Pan J, Yan Y, Chen Y, Xiong Q (2017) A novel route for green conversion of cellulose to HMF by cascading enzymatic and chemical reactions. AIChE J 63:4920–4932CrossRef
30.
go back to reference Antonetti C, Melloni M, Licursi D, Fulignati S, Ribechini E, Rivas S, Parajó JC, Cavani F, Raspolli Galletti AM (2017) Microwave-assisted dehydration of fructose and inulin to HMF catalyzed by niobium and zirconium phosphate catalysts. Appl Catal B 206:364–377CrossRef Antonetti C, Melloni M, Licursi D, Fulignati S, Ribechini E, Rivas S, Parajó JC, Cavani F, Raspolli Galletti AM (2017) Microwave-assisted dehydration of fructose and inulin to HMF catalyzed by niobium and zirconium phosphate catalysts. Appl Catal B 206:364–377CrossRef
31.
go back to reference Chun J-A, Lee J-W, Yi Y-B, Hong S-S, Chung C-H (2010) Direct conversion of starch to hydroxymethylfurfural int he presence of an ionic liquid with metal chloride. Starch/Strke 62:326–330CrossRef Chun J-A, Lee J-W, Yi Y-B, Hong S-S, Chung C-H (2010) Direct conversion of starch to hydroxymethylfurfural int he presence of an ionic liquid with metal chloride. Starch/Strke 62:326–330CrossRef
32.
go back to reference Yu IKM, Tsang DCW, Yip Al CK, Chen SS, Wang L, OkY S, Poon CS (2017) Catalytic valorization of starch-rich food waste into hydroxymethylfurfural (HMF): controlling relative kinetics for high productivity. Biores Technol 237:222–230CrossRef Yu IKM, Tsang DCW, Yip Al CK, Chen SS, Wang L, OkY S, Poon CS (2017) Catalytic valorization of starch-rich food waste into hydroxymethylfurfural (HMF): controlling relative kinetics for high productivity. Biores Technol 237:222–230CrossRef
33.
go back to reference Carniti P, Gervasini A, Biella S, Auroux A (2006) Niobic acid and niobium phosphate as highly acidic viable catalyst in aqueous medium: fructose dehydration reaction. Catal Today 118:373–378CrossRef Carniti P, Gervasini A, Biella S, Auroux A (2006) Niobic acid and niobium phosphate as highly acidic viable catalyst in aqueous medium: fructose dehydration reaction. Catal Today 118:373–378CrossRef
34.
go back to reference Kourieh R, Bennici S, Marzo M, Gervasini A, Auroux A (2012) Investigation of the WO3/ZrO2 surface acidity properties for the aqueous hydrolysis of cellobiose. Catal Commun 19:119–126CrossRef Kourieh R, Bennici S, Marzo M, Gervasini A, Auroux A (2012) Investigation of the WO3/ZrO2 surface acidity properties for the aqueous hydrolysis of cellobiose. Catal Commun 19:119–126CrossRef
35.
go back to reference Marzo M, Gervasini A, Carniti P (2012) Hydrolysis of disaccharides over solid aid catalysts under green conditions. Carbohyd Res 347:23–31CrossRef Marzo M, Gervasini A, Carniti P (2012) Hydrolysis of disaccharides over solid aid catalysts under green conditions. Carbohyd Res 347:23–31CrossRef
36.
go back to reference Campos Molina MJ, López Granados M, Gervasini A, Carniti P (2015) Exploitment of niobium oxide effective acidity for xylose dehydration to furfural. Catal Today 254:90–98CrossRef Campos Molina MJ, López Granados M, Gervasini A, Carniti P (2015) Exploitment of niobium oxide effective acidity for xylose dehydration to furfural. Catal Today 254:90–98CrossRef
37.
go back to reference Agarwal S, van Es D, Heeres HJ (2017) Catalytic pyrolysis of recalcitrant, insoluble humin byproducts from C6 sugar biorefineries. J Anal Appl Pyrol 123:134–143CrossRef Agarwal S, van Es D, Heeres HJ (2017) Catalytic pyrolysis of recalcitrant, insoluble humin byproducts from C6 sugar biorefineries. J Anal Appl Pyrol 123:134–143CrossRef
Metadata
Title
A Rational Revisiting of Niobium Oxophosphate Catalysts for Carbohydrate Biomass Reactions
Authors
Sebastiano Campisi
Simona Bennici
Aline Auroux
Paolo Carniti
Antonella Gervasini
Publication date
04-06-2018
Publisher
Springer US
Published in
Topics in Catalysis / Issue 18-19/2018
Print ISSN: 1022-5528
Electronic ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-018-0999-x

Other articles of this Issue 18-19/2018

Topics in Catalysis 18-19/2018 Go to the issue

Premium Partners