Skip to main content
Top

2020 | OriginalPaper | Chapter

4. A Refined Assessment Methodology for Wastewater Treatment Alternatives

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The environmental quality of receiving waters will no longer be the sole objective of sustained management in future wastewater treatment. In addition to the protection of water resources and environments, considerable attention must be paid to other resources, such as energy and nutrient resources, for long-term sustained development. It is certain that the reduction of the energy consumption and greenhouse gas (GHG) emissions and resource recovery will become key focus areas in the development of new wastewater treatment technologies and processes in the future. The exploration of methods to construct novel ensemble-type wastewater treatment technologies and processes aiming at energy conservation, reduced carbon emissions, and resource recovery based on existing technologies and processes is the future trend in the development of the wastewater industry. As described in Sect. 2.​3, comprehensive assessment systems of wastewater treatment processes were established based on the assurance of environmental benefits such as the water quality. In Chap. 3, the sources and key links of the environmental impact of typical wastewater treatment processes were preliminarily analyzed from the life cycle perspective. However, there is a lack of consideration of the recovery and utilization of usable materials in wastewater and sludge and relevant scenario settings and analysis. Therefore, regardless of the research and development of new technologies and new processes in the future or the upgrade and reconstruction of existing processes, a scientific, systematic, and comprehensive wastewater treatment assessment system is required. Such a system should consider the technological levels of existing wastewater treatment processes and the main environmental effects of the wastewater treatment and resource recovery potential of materials produced during the treatment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Doka, G. (2003). Life cycle inventories of waste treatment services (Ecoinvent Report No. 13), Swiss Centre for Life Inventories, Dubendorf. Doka, G. (2003). Life cycle inventories of waste treatment services (Ecoinvent Report No. 13), Swiss Centre for Life Inventories, Dubendorf.
go back to reference Foley, J., de Haas, D., Hartley, K., & Lant, P. (2010a). Comprehensive life cycle inventories of alternative wastewater treatment systems. Water Research, 44(5), 1654–1666.CrossRef Foley, J., de Haas, D., Hartley, K., & Lant, P. (2010a). Comprehensive life cycle inventories of alternative wastewater treatment systems. Water Research, 44(5), 1654–1666.CrossRef
go back to reference Foley, J., de Haas, D., Yuan, Z. G., & Lant, P. (2010b). Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants. Water Research, 44(3), 831–844.CrossRef Foley, J., de Haas, D., Yuan, Z. G., & Lant, P. (2010b). Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants. Water Research, 44(3), 831–844.CrossRef
go back to reference Horne, R., Grant, T., & Verghese, K. (2009). Life cycle assessment: Principles, practice and prospects. Victoria, Australia: CSIRO Publishing.CrossRef Horne, R., Grant, T., & Verghese, K. (2009). Life cycle assessment: Principles, practice and prospects. Victoria, Australia: CSIRO Publishing.CrossRef
go back to reference IPCC. (1997). Reference manual: Intergovernmental panel on climate change. Geneva: the National Greenhouse Gas Inventories Programme. IPCC. (1997). Reference manual: Intergovernmental panel on climate change. Geneva: the National Greenhouse Gas Inventories Programme.
go back to reference IPCC. (2001). Climate change 2001: The scientific basis. Cambridge: Cambridge University Press. IPCC. (2001). Climate change 2001: The scientific basis. Cambridge: Cambridge University Press.
go back to reference IPCC. (2006a). IPCC guidelines for national greenhouse gas inventories, National Greenhouse Gas Inventories Programme. IPCC. (2006a). IPCC guidelines for national greenhouse gas inventories, National Greenhouse Gas Inventories Programme.
go back to reference IPCC. (2006b). Wastewater treatment and discharge. H.S. Eggleston, L. Buendia, K. Miwa, T. Ngara, & K. Tanabe (Eds.), The National Greenhouse Gas Inventories Programme, Japan. IPCC. (2006b). Wastewater treatment and discharge. H.S. Eggleston, L. Buendia, K. Miwa, T. Ngara, & K. Tanabe (Eds.), The National Greenhouse Gas Inventories Programme, Japan.
go back to reference Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus recovery from wastewater by struvite crystallization: A review. Critical Reviews in Environmental Science and Technology, 39(6), 433–477.CrossRef Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus recovery from wastewater by struvite crystallization: A review. Critical Reviews in Environmental Science and Technology, 39(6), 433–477.CrossRef
go back to reference Lindfors, L.-G. (1995). Nordic guidelines on life-cycle assessment. Copenhagen: Nordic Council of Ministers. Lindfors, L.-G. (1995). Nordic guidelines on life-cycle assessment. Copenhagen: Nordic Council of Ministers.
go back to reference Logan, B. E., Hamelers, B., Rozendal, R. A., Schrorder, U., Keller, J., Freguia, S., et al. (2006). Microbial fuel cells: Methodology and technology. Environmental Science and Technology, 40(17), 5181–5192.CrossRef Logan, B. E., Hamelers, B., Rozendal, R. A., Schrorder, U., Keller, J., Freguia, S., et al. (2006). Microbial fuel cells: Methodology and technology. Environmental Science and Technology, 40(17), 5181–5192.CrossRef
go back to reference Metcalf, I., & Eddy, H. (2003). Wastewater engineering: Treatment and reuse. New York: McGraw-Hill. Metcalf, I., & Eddy, H. (2003). Wastewater engineering: Treatment and reuse. New York: McGraw-Hill.
go back to reference Ren, N. Q., Guo, W. Q., Liu, B. F., Cao, G. L., & Ding, J. (2011). Biological hydrogen production by dark fermentation: Challenges and prospects towards scaled-up production. Current Opinion in Biotechnology, 22(3), 365–370.CrossRef Ren, N. Q., Guo, W. Q., Liu, B. F., Cao, G. L., & Ding, J. (2011). Biological hydrogen production by dark fermentation: Challenges and prospects towards scaled-up production. Current Opinion in Biotechnology, 22(3), 365–370.CrossRef
go back to reference Shahabadi, M. B., Yerushalmi, L., & Haghighat, F. (2009). Impact of process design on greenhouse gas (GHG) generation by wastewater treatment plants. Water Research, 43(10), 2679–2687.CrossRef Shahabadi, M. B., Yerushalmi, L., & Haghighat, F. (2009). Impact of process design on greenhouse gas (GHG) generation by wastewater treatment plants. Water Research, 43(10), 2679–2687.CrossRef
go back to reference Shaw, A., Kadava, A., & Tarallo, S. (2011). Refinement of life cycle assessment (LCA) Methods for water and wastewater treatment plant design. Amsterdam: IWA publisher. Shaw, A., Kadava, A., & Tarallo, S. (2011). Refinement of life cycle assessment (LCA) Methods for water and wastewater treatment plant design. Amsterdam: IWA publisher.
go back to reference Verstraete, W., & Vlaeminck, S. E. (2011). ZeroWasteWater: Short-cycling of wastewater resources for sustainable cities of the future. International Journal of Sustainable Development and World Ecology, 18(3), 253–264.CrossRef Verstraete, W., & Vlaeminck, S. E. (2011). ZeroWasteWater: Short-cycling of wastewater resources for sustainable cities of the future. International Journal of Sustainable Development and World Ecology, 18(3), 253–264.CrossRef
go back to reference Wang, X., Liu, J. X., Ren, N. Q., Yu, H. Q., Lee, D. J., & Guo, X. S. (2012). Assessment of Multiple sustainability demands for wastewater treatment alternatives: A Refined evaluation scheme and case study. Environmental Science and Technology, 46(10), 5542–5549.CrossRef Wang, X., Liu, J. X., Ren, N. Q., Yu, H. Q., Lee, D. J., & Guo, X. S. (2012). Assessment of Multiple sustainability demands for wastewater treatment alternatives: A Refined evaluation scheme and case study. Environmental Science and Technology, 46(10), 5542–5549.CrossRef
Metadata
Title
A Refined Assessment Methodology for Wastewater Treatment Alternatives
Author
Xu Wang
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-5983-5_4