Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

15-06-2018 | Original Article | Issue 7/2019

International Journal of Machine Learning and Cybernetics 7/2019

A reinforced fuzzy ARTMAP model for data classification

Journal:
International Journal of Machine Learning and Cybernetics > Issue 7/2019
Authors:
Farhad Pourpanah, Chee Peng Lim, Qi Hao
Important notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

This paper presents a hybrid model consisting of fuzzy ARTMAP (FAM) and reinforcement learning (RL) for tackling data classification problems. RL is used as a feedback mechanism to reward the prototype nodes of data samples established by FAM. Specifically, Q-learning is adopted to develop the hybrid model known as QFAM. A Q-value is assigned to each prototype node, which is updated incrementally based on the prediction accuracy of the node pertaining to each data sample. To evaluate the performance of the proposed QFAM model, a series of experiments with benchmark problems and a real-world case study, i.e., human motion recognition, are conducted. The bootstrap method is used to quantify the results with the 95% confidence interval estimates. The results are also compared with those from FAM as well as other models reported in the literature. The outcomes indicate the effectiveness of QFAM in tackling data classification tasks.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 7/2019

International Journal of Machine Learning and Cybernetics 7/2019 Go to the issue