Skip to main content
Top
Published in:

01-12-2023 | Original Article

A reliable sentiment analysis for classification of tweets in social networks

Authors: Masoud AminiMotlagh, HadiShahriar Shahhoseini, Nina Fatehi

Published in: Social Network Analysis and Mining | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In modern society, the use of social networks is more than ever and they have become the most popular medium for daily communications. Twitter is a social network where users are able to share their daily emotions and opinions with tweets. Sentiment analysis is a method to identify these emotions and determine whether a text is positive, negative, or neutral. In this article, we apply four widely used data mining classifiers, namely K-nearest neighbor, decision tree, support vector machine, and naive Bayes, to analyze the sentiment of the tweets. The analysis is performed on two datasets: first, a dataset with two classes (positive and negative) and then a three-class dataset (positive, negative and neutral). Furthermore, we utilize two ensemble methods to decrease variance and bias of the learning algorithms and subsequently increase the reliability. Also, we have divided the dataset into two parts: training set and testing set with different percentages of data to show the best train–test split ratio. Our results show that support vector machine demonstrates better outcomes compared to other algorithms, showing an improvement of 3.53% on dataset with two-class data and 7.41% on dataset with three-class data in accuracy rate compared to other algorithms. The experiments show that the accuracy of single classifiers slightly outperforms that of ensemble methods; however, they propose more reliable learning models. Results also demonstrate that using 50% of the dataset as training data has almost the same results as 70%, while using tenfold cross-validation can reach better results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ali MZ, Javed K, Tariq A (2021) Sentiment and emotion classification of epidemic related bilingual data from social media. arXiv preprint arXiv:2105.01468 Ali MZ, Javed K, Tariq A (2021) Sentiment and emotion classification of epidemic related bilingual data from social media. arXiv preprint arXiv:​2105.​01468
go back to reference Al-Laith A, Shahbaz M, Alaskar HF, Rehmat A (2021) Arasencorpus: a semi-supervised approach for sentiment annotation of a large arabic text corpus. Appl Sci 11(5):2434CrossRef Al-Laith A, Shahbaz M, Alaskar HF, Rehmat A (2021) Arasencorpus: a semi-supervised approach for sentiment annotation of a large arabic text corpus. Appl Sci 11(5):2434CrossRef
go back to reference Chauhan UA, Afzal MT, Shahid A, Abdar M, Basiri ME, Zhou X (2020) A comprehensive analysis of adverb types for mining user sentiments on amazon product reviews. World Wide Web 23(3):1811–1829CrossRef Chauhan UA, Afzal MT, Shahid A, Abdar M, Basiri ME, Zhou X (2020) A comprehensive analysis of adverb types for mining user sentiments on amazon product reviews. World Wide Web 23(3):1811–1829CrossRef
go back to reference Kaur C, Sharma A, (2020). Twitter sentiment analysis on coronavirus using textblob (No. 2974). EasyChair. Kaur C, Sharma A, (2020). Twitter sentiment analysis on coronavirus using textblob (No. 2974). EasyChair.
go back to reference Machuca CR, Gallardo C, Toasa RM (1828) 2021, Twitter sentiment analysis on coronavirus: Machine learning approach. J Phys Conf Series 1:012104 Machuca CR, Gallardo C, Toasa RM (1828) 2021, Twitter sentiment analysis on coronavirus: Machine learning approach. J Phys Conf Series 1:012104
go back to reference Yadav N, Kudale O, Rao A, Gupta S, Shitole A (2021) Twitter sentiment analysis using supervised machine learning. In: Hemanth J, Bestak R, Chen JI-Z (eds) Intelligent Data Communication Technologies and Internet of Things. Springer, Singapore, pp 631–642CrossRef Yadav N, Kudale O, Rao A, Gupta S, Shitole A (2021) Twitter sentiment analysis using supervised machine learning. In: Hemanth J, Bestak R, Chen JI-Z (eds) Intelligent Data Communication Technologies and Internet of Things. Springer, Singapore, pp 631–642CrossRef
go back to reference Nuser M, Alsukhni E, Saifan A, Khasawneh R, Ukkaz D, (2022) Sentiment analysis of COVID-19 vaccine with deep learning. J Theor Appl Inf Technol. 100(12):4513-4521. Nuser M, Alsukhni E, Saifan A, Khasawneh R, Ukkaz D, (2022) Sentiment analysis of COVID-19 vaccine with deep learning. J Theor Appl Inf Technol. 100(12):4513-4521.
Metadata
Title
A reliable sentiment analysis for classification of tweets in social networks
Authors
Masoud AminiMotlagh
HadiShahriar Shahhoseini
Nina Fatehi
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2023
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-022-00998-2

Premium Partner